熟練技能に替わるパイプ自動ろう付け技術
Automatic brazing technology of the pipe replaced with a skilled worker

今村 清治（富士電機アドバンストテクノロジー）
○岡本 浩一（富士電機アドバンストテクノロジー）

Key Words: Automatic Braizing Technology

1. 緒言
複雑な冷却用銅配管（パイプ）の維手接合には、手作業によるガスろう付けが広く用いられている。気密性と品質の安定化が求める維手部のろう付け作業には熟達した技能が必要であり、作業者の技能レベルによってろう付け部の品質が左右される。
手作業ガスろう付けは作業者がパイプ表面の赤み（温度）を確認しながら、差し込むタイミングとろうの濡れ性を経験的に判断してろう付けを行うため、たとえ熟練者であっても個人差により接合部の品質にバラツキを生じさせることができる。これらの問題点を解決するため、高周波加熱による自動ろう付けシステムを開発したので紹介する。

2. 自動ろう付けシステム
Fig1に高周波加熱による自動ろう付け装置のシステム構成を示す。本システムは小型高周波加熱ヘッド部、低容量高周波電源、自動ろう材ワイヤ供給装置とコントローラで構成される。

2-1 高周波加熱コイル
通常ガスろう付け作業では、ろう付部を均一加熱し、その部分にろう材を溶かしてろう付の隙間に浸透させる。この様な一連の作業は熟練を要する。本システムでは、高周波加熱による熟練不要の加熱コイルを開発した。特長は以下の通りである。
① パイプの着脱が容易なU字形状のコイル（片側開きが可能なコイル）
② 広い均一加熱域が得られるコイル形状
③ 磁性体ブロックを装着した高効率なU字形状コイルなどである。また同時に、パイプが複雑に配置された狭小スペースでのろう付け作業がし易い、量産性に優れた小型・高効率の加熱コイルを開発した。

2-2 非接触温度センサ
ろう付け品質を確保する上で最も重要な事は、適正な温度域でろう付けを行うことである。手作業ろう付けではパイプの赤みから経験的に温度を推測するため、作業者の体調や周囲環境の変化によっては、ろう付け作業温度が変動する。自動ろう付けシステムでは、強電磁界環境下でも非接触で加熱温度を計測できる小型の放射温度センサでパイプ表面温度をモニタリング制御することで、作業者による判断を排除した。

2-3 ろう材自動供給措置
手作業ろう付けでは欠陥の発生を防ぐためろう材量を多めに供給しがちで、ろう材のムダが生じる傾向がある。またろう材を差しタイミングによっては、ろうの浸透度合いにバラツキが生じ、品質低下の一因と
もなる。これを解決するため、自動ろう付け装置には適正量のろう材を適切なタイミングで供給可能なろう材ワイヤ自動供給機能を持たせた。

ろう材はワイヤ供給装置にセットしたワイヤドラムから自動的に供給される。ろう材ワイヤの供給ムラを防ぐため、高精度なろう材送り制御ができる機構とした。このような特長により、ムダの無いろう材供給とろう付け材質の安定化を達成した。

3. 自動ろう付け方法
作業者は鋼パイプを加熱ヘッドにセットした後、コントローラ上のスタートスイッチを押すだけで自動ろう付けが可能である。加熱開始後、予め設定した温度でワイヤの供給がスタートする。ろう付け温度はPID制御され、ろう付け作業温度に達すると一定時間温度を保持した後、自動的に電源供給を停止する。ワイヤ供給待機時間、ワイヤの送り速度と時間及びワイヤ戻し速度と時間は任意に設定が可能である。

4. ろう付け部材質の比較
Fig3及びFig4に手動ガスろう付け品と高周波自動ろう付け品の接合部外観及び切断面状況を比較した結果を示す。ガスろう付けは熟練作業者によるものである。外観上はいずれもろう材フィレットが形成され良好な材質であるが、断面を観察すると手動ろう付け部の内部にはプローホールが見受けられる。加熱温度や加熱時間などの個人差がプローホールの発生要因となっている場合がある。一方、高周波加熱によるろう付け部はプローホールも極めて少なく、内部のろう材浸透も十分であった。

Fig5にはろう付け温度を変えて自動ろう付けした時の接合部材質を示す。使用したろう材はリン鋼ろうであるが、自動ろう付け装置では広い温度範囲にわたり欠陥の無い、良好な接合材質が得られている。

日本機械学会[No.060-5]関東支部第2回埼玉ブロック大会講演会講演論文集（06.11.10,さいたま市）