小学校5・6年の溶解の学習に一貫して粒子モデルを用いた効果

○山下 修一 A, 小野寺 千恵 B
YAMASHITA Shuichi, ONODERA Chie
千葉大学教育学部 A, 杉並区立和泉小学校 B

【キーワード】一貫性, 粒子モデル, 溶解, 水溶液の性質, もののとけ方

【要 約】
粒子モデルを用いて5年『もののとけ方』を学んだ児童が, 6年『水よう液の性質』の一部でも粒子モデルで溶解について学ぶ効果を検討した。粒子モデルを用いて『もののとけ方』と『水よう液の性質』を学習させた一貫モデル群25名, 『もののとけ方』のみ粒子モデルを用いた5年モデル群46名, 粒子モデルを用いなかった通常授業群62名, 計133名の6年生を対象にして, 『水よう液の性質』の学習前後で調査を実施した。その結果, 事前の段階では質量保存の理解について群間に有意な差はなかったが, 容器へとこむ理由については, 通常授業群よりも一貫モデル群・5年モデル群の方がよく説明できるようになっていた。発展的課題については, 一貫モデル群で容器がつぶれた印象にとらわれず, 学んだ知識を活用して回答していた児童が多く見られた。

1. 調査対象および実施時期
2007年1月～2月に東京都内の公立小学校5年生2クラスを対象に, 粒子モデルを用いて『もののとけ方』を学習させた。1年後には児童数増により3クラスになった。6年生の1クラスで, 粒子モデルを用いて『水よう液の性質』の一部を学習させた(一貫モデル群)。6年生の他の2クラスでは, 粒子モデルを用いず常の授業を展開した(5年モデル群)。または, 常のために粒子モデルを用いていない近隣の小学校2校の6年生1クラスずつの児童から, 調査への回答協力を得た(通常授業群)。

2. 調査項目
(1) 事前調査
2007年11月に『水よう液の性質』を学習する前の質量保存についての理解と粒子モデルの使用状況を把握するために, 事前調査を実施した。
①質量保存についての理解
水100gに食塩10gを入れて, 食塩の粒が半分くらい残っている状態に, さらにかきませて食塩が見えなくなった状態での食塩水の重さについて, それぞれ「110gより重い・110g・105g」から選択させた。
②食塩が水に溶けている様子
水塩が水に溶けている様子をビーカーの図の中に描かせて, 言葉でも説明させる。
(2) 事後調査
2008年1月に『水よう液の性質』を学習した後の二酸化炭素水についての理解と粒子モデルの使用粗状況を把握するために, 事後調査を実施した。
①二酸化炭素水についての様子
ペットボトルに水と二酸化炭素を入れて振る前の様子を持ち上げるの図の中に描かせて, 容器がへこむ理由を言葉でも説明させる。
② 発展的課題
ペットボトルを振る前の水の部分と振動後の水の部分を示し, わたった水分ときの状態を観察する。リトマス紙で調べる。蒸発させたこと。

3. 授業内容

表1 6年時の学習内容(一貫モデル群)

<table>
<thead>
<tr>
<th>時</th>
<th>学習内容</th>
<th>児童の学習活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>気体が溶けている水溶液の調べ方</td>
<td>5年生『もののとけ方』の学習を粒子モデルを用いて振り返る。</td>
</tr>
<tr>
<td>2</td>
<td>炭酸水作り方</td>
<td>二酸化炭素を水が入った容器に集め, やく沸って溶けた水に溶かす。</td>
</tr>
<tr>
<td>3</td>
<td>塩酸・炭酸水・アンモニア水の性質</td>
<td>気体がとける水溶液の性質についてまとめ。</td>
</tr>
</tbody>
</table>

日本理科教育学会（2008）