中学校理科における科学的処理育成に関する研究

-「科学的な証拠を用いる力」に焦点を当てて-

○大多和 浩弥A, 木下 博義B
OTAWA Hiromitsu, KINOSHITA Hiyoshi
広島大学大学院A, 広島大学大学院教育学研究科B

【キーワード】中学校理科, 科学的リテラシー, 科学的能力, 指導法, 授業実践

1. 研究の背景および目的
近年, 理科教育において, 科学的リテラシーを育成することが重要視されている。OECDが実施しているPISA調査では, 科学的リテラシーを「状況と文脈」 「科学的知識」 「科学的能力」 「科学に対する態度」の4つの枠組みから定義している。この中でも「科学的能力」については, 科学的リテラシーの核をなす能力であることから, 本研究では, 科学的育成のための指導法を考察し, その効果を検証することにした。
なお, 科学的能力は, 「科学的な疑問を認識する力」 「現象を科学的に説明する力」 「科学的な証拠を用いる力」の3つの枠組みから構成されており, 本研究では「科学的な証拠を用いる力」に着目することにした。

2. 方法
2-1 科学的証拠を用いる力の定義
科学的な証拠を用いる力は, OECDによって, 「科学的証拠を解釈し, 結論を導き, 伝達する力」「結論の背景にある過程又は証拠, 推論を特定する力」「科学やテクノロジーの発展の社会的意味について考えた力」という3つの下位能力から定義されている。本研究では, この定義をそのまま用いるとともに, これらの下位能力のうち, 「科学的証拠を解釈し, 結論を導き, 伝達する力」と「結論の背景にある過程又は証拠, 推論を特定する力」の2つに着目することにした。

2-2 指導法およびワークシートの考察
「科学的な証拠を用いる力」を育成するために, 「科学的な証拠をもとに, 根拠の明確な結論を導かせる指導」、「結論が導かれた過程を吟味させ, 評価させる指導」が必要であると考えた。そして, これらの指導を行うためのワークシートを考察した。

2-3 質問紙の作成
「科学的な証拠を用いる力」の規定に基づき, 生徒の「科学的な証拠を用いる力」を評価するための全12項目の質問紙（5件法）を作成した。

2-4 授業実践
考察した指導法の効果を検証するため, 中学校第2学年を対象に, 第2分野「動物の生活と生物の変遷」の「生物の変遷と進化」の単元で授業実践を行った。具体的には, まず, 「アーキオプテリクスは脊椎動物のどのグループに分類されるか」という課題に対し, これまでに学習した脊椎動物の分類に関する基本知識をもとに, 実際に身の世論の導来の実習に。次に, 結論を導くまでの思考過程をペアで推定・評価させ, 相手による推定や評価をもとに, 一の思考過程を振り返らせ活動を行わせた。

3. 結果
ここでは, 考察した指導法の効果検証の一部として, 質問紙の分析について示す。まず, 得られた回答をもとに因子分析および信頼性分析を行い, 「結論の導出と伝達」「結論の導出過程の推定」の2つの因子を抽出した。次に, 質問紙の各項目への回答を该项目の項目得点とし, 因子ごとに平均値を算出し, これを各因子の下位尺度得点とした。続いて, 指導の前後の2各因子の平均得点に有意な差があるか否かを検証するために, 対応のあるt検定を行った。分析結果を表1に示す。分析の結果, 「結論の導出過程の推定」については, 指導の前後で有意な得点の差がみられた。このことから, 本研究で考察した指導法は, 「科学的な証拠を用いる力」のうち, 「結論の背景にある過程又は証拠, 推論を特定する力」の育成に寄与することが示唆された。

<table>
<thead>
<tr>
<th>因子名</th>
<th>平均得点</th>
<th>標準偏差</th>
<th>t値</th>
</tr>
</thead>
<tbody>
<tr>
<td>結論の導出と伝達</td>
<td>前 3.54</td>
<td>.63</td>
<td>.59</td>
</tr>
<tr>
<td>后 3.60</td>
<td>.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結論の導出過程の推定</td>
<td>前 3.55</td>
<td>.70</td>
<td>2.07*</td>
</tr>
<tr>
<td>后 3.76</td>
<td>.69</td>
<td>*</td>
<td>p<.05</td>
</tr>
</tbody>
</table>

この他, ワークシート記述の分析や検証結果の考察については, 発表当日に報告する。