'土佐文旦'におけるストレプトマイシン処理と摘果時期の違いが
無核果実生産に及ぼす影響

山崎安津1・北島 宣1*・服部直美2・長谷川耕二郎2

1 京都大学大学院農学研究科 569-0996 高槻市八丁畑町
2 高知大学農学部 783-8502 南国市物部

Effects of Streptomycin and Fruit Thinning Time on Seedless Fruit Production
in 'Tosa Buntan' Pummelo

Atsu Yamasaki1, Akira Kitajima1*, Naomi Hattori2 and Kojiro Hasegawa1

1Graduate School of Agriculture, Kyoto University, Takatsuki 569-0996
2Faculty of Agriculture, Kochi University, Monobe, Nankoku 783-8502

Abstract

To realize seedless fruit production in 'Tosa Buntan' pummelo (Citrus grandis Osb.), the effects of streptomycin (SM) spraying, open pollination and fruit thinning time on seedless fruit set and development were investigated in a commercial orchard consisting almost entirely of a single cultivar. Three spray applications of 500 ppm SM to whole trees at 1-5%, 50% and 100% flowering time produced completely seedless fruit. Seedless fruits were not only easy to eat due to the minimal length of unfertilized ovules, but also easy to separate segments due to an undeveloped core. Fruit thinning with a leaf/fruit ratio of 120 4 weeks after full bloom increased seedless fruit size and over 30% of seedless fruit were the most commercially desirable 3L size. The number of fruit set per secondary scaffold branch, the proportion of edible portions and citric acid concentration were similar to those of hand-pollinated control fruit. These findings demonstrate that three spray treatments of SM and early fruit thinning 4 weeks after full bloom in a single cultivar produced a desirable size of seedless fruits in 'Tosa Buntan' pummelo.

Key Words: citrus, fruit development, seed formation, single cultivar

緒 言

近年、カンキツ類に対する消費者の嗜好は多様化し、良食味かつ無核の果実が好まれている。高知県特産の'土佐文旦'は品質優良であるが、種子数が70個以上も多いことが欠点であり、商品価値の高い無核果実の生産が望まれている。'土佐文旦'は自家不和性が強く（岩川, 1986; 北島ら, 1997）、単為結果力が弱い（岩川, 1986）ことから、栽培農家は結実安定や高品質果実生産のために人工受粉を行っている。しかし、人工受粉は多くの労力を必要とし、開花中の天候に左右されるため、生産者にとって栽培上のネックとなっている。また、商品性が高く外観の良い大玉果実を生産するためには、生理落果終了後の7月上旬から摘果を2〜3回に分けて一定の大きさにすれば果実が行われる。一般に、早摘果は果実発育を促進すると言われており、'不知火'やポンカン（高木ら, 2003）、ウンシュウミカン（大垣ら, 1965）において、慣行の摘果時期よりも早摘果で果実肥大が促進されることが報告されている。

前報（北島ら, 2004）において、開花率が1〜5%、50%および100%のときにストレプトマイシン（SM）500 ppm溶液を樹全体に3回散布することにより'土佐文旦'の完全種子数が5個以下となり、種子形成の顕著な抑制効果が認められること、また、通常の摘果時期よりも早摘果6〜8月下旬に果実が90〜100で摘果することで、収穫果実重が470 g程度の果実を生産できることを明らかにした。このことから、SM3回散布と早期の摘果を組み合わせることにより、無核果実生産は可能であると考えられた。しかし、実際に商品性の高い3L級の無核果実がどの程度生産できるかは不明であり、摘果時期をさらに早めることによる無核果実の発育や無核果率をさらに高める条件について検討する必要がある。
そこで本研究では、単栄栽培においてSM3処理を行い、種子形態や結実に及ぼす影響を明らかにするとともに、さらに早期の摘果が無果実の発育に及ぼす影響を調査し、商品性の優れた‘土佐文旦’の無果実果生産について検討した。

材料および方法

高知県香美郡野市町の生産農家に設けられた7年生‘土佐文旦’8樹を用い、SM3處理（6樹）およびSM無処理（2樹）を設けた。なお、本摘果はほぼ単栄圃場であり、供試した樹から約100m離れた場所にポカンや‘川野なつだい’と同一品種を植えていた。各供試樹とも、調査期として長さ15cm程度の促主枝2本選び、調査枝に着生する花蕾数を4月27日に調査した。また、調査枝上の平均的な新梢を5本選び、4月13日から新梢長を経時的に測定するとともに、調査枝から発生する新梢数も測定した。

SM処理は、開花率1〜9%（4月27日）、50%（5月6日）、100%（5月12日）にストレスマイン水和剤400倍（有効成分500ppm）をアセフェート水和剤1000倍液を混含した。SM処理は、栽培圃場の慣行に従い、前年のヒウガナブ保存花粉を用いて人工受粉を行った。開花率が80〜90%の5月8日に満開とした。SM最終処理1週間後の5月19日に調査枝に着生しているすべての枝条と果実を調査し、1周間ごと（7月からは2周間ごと）に果実数を調査した。また、調査枝上の果実数を、5月29日から1週間ごと（8月からは2週間ごと）に果実を調査した。

摘果時期については、SM処理では満開4週間後の6月6日（以下SM4区）、5週間後の6月13日（以下SM5区）、6週間後の6月20日（以下SM6区）に、葉果比が約120となるように植樹全体を摘果した。摘果は基本的に1花毎1果実として、小さい果実を摘果して樹全体にまんべなく果実が残るようにした。なお、調査枝以外についても同様に摘果した。SM無処理（以下対照区）は栽培圃場の慣行に従って7月4日、8月17日、10月2日に摘果を行い、稲摘果では傷のついた果実や小さい果実を、仕上げ摘果で果実横径が約9cm以下の果実を摘除し、最終的な葉果比を約120とした。

12月25日に果実を収穫し、調査枝上の果実について果実、果実重、果肉割合、種子数および不熟果実率を調査するとともに、果肉の糖度とクエン酸含量を測定した。また、樹上の果実全体について果実横径を測定し、高知県の出荷基準に基づいて果実の各階級（4L：123mm以上、3L：116mm～123mm未満、2L：109mm～116mm未満、1L：102mm～109mm未満、M：95mm～102mm未満、S：88mm以上～95mm未満）の割合を計算した。

結果

SM処理と摘果時期の違いが果実発育に及ぼす影響を第1図に示した。着果数はいずれの処理区とも摘果前まではほぼ同様に推移した。SM処理区の摘果前の着果数は、45〜76個であり十分な果実が確保されていた。摘果後はいずれの処理区でも果実がみられず、10月17日の調査枝当たり

第1図 SM処理と摘果時期の違いが果実発育に及ぼす影響
異なるアルファベットはTukeyの多重検定（5%レベる）で有意差あり

第2図 SM処理と摘果時期の違いが果実発育に及ぼす影響
異なるアルファベットはTukeyの多重検定（5%レベル）で有意差あり

第3図 SM処理と摘果時期の違いが果実横径の肥大速度に及ぼす影響
異なるアルファベットはTukeyの多重検定（5%レベル）で有意差あり

NII-Electronic Library Service
SM処理と摘果時期の違いが新梢生長と夏秋梢発生数
に及ぼす影響
異なるアルファベットは Tukey の多重検定（5%レベル）で有意差あり
夏秋梢剪除は7月31日と9月9日に行った

第1表 ‘土佐文豆’におけるSM処理と摘果時期の違いが収穫果実の種子数と果実数および品質に及ぼす影響

<table>
<thead>
<tr>
<th>処理区</th>
<th>SM</th>
<th>摘果日</th>
<th>果実重（g）</th>
<th>果径（mm）</th>
<th>果肉割合（%）</th>
<th>クエン酸含量（%）</th>
<th>糖度（Brix%）</th>
<th>種子数（個/果実）</th>
<th>果実数</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM4区</td>
<td>500 ppm</td>
<td>6月6日</td>
<td>435.1 a</td>
<td>109.4 a</td>
<td>90.4 b</td>
<td>9.0 b</td>
<td>0.0 a</td>
<td>93.9 b</td>
<td>62 a</td>
</tr>
<tr>
<td>SM5区</td>
<td>500 ppm</td>
<td>6月13日</td>
<td>440.1 a</td>
<td>109.4 a</td>
<td>90.6 b</td>
<td>8.5 a</td>
<td>0.4 a</td>
<td>95.3 b</td>
<td>55 a</td>
</tr>
<tr>
<td>SM6区</td>
<td>500 ppm</td>
<td>6月20日</td>
<td>411.9 a</td>
<td>106.7 a</td>
<td>90.9 a</td>
<td>9.6 c</td>
<td>0.0 a</td>
<td>101.4 b</td>
<td>47 a</td>
</tr>
<tr>
<td>対照区</td>
<td>無処理</td>
<td>6月6日</td>
<td>519.2 b</td>
<td>114.4 b</td>
<td>92.7 b</td>
<td>9.9 c</td>
<td>22.3 b</td>
<td>18.0 b</td>
<td>53.2 a</td>
</tr>
</tbody>
</table>

注1: 叉なるアルファベットは Tukey の多重検定（5%レベル）で有意差あり
注2: 7月4日，8月17日，10月2日の3回行った
実験施設の選別を行った（第7図）。商品性の最も高い3L級の果実では、SM4区が31.5%と最も高く、次いでSM5区の27.3%、対照区の23.6%であり、SM6区は13.8%と低かった。さらに、商品性が比較的高い2L～4L級果実を含めた果実の合計では、対照区で71.4%、SM4区では67.8%、SM5区では59.1%、SM6区では53.2%であり、SM4区は対照区と大きな違いがなく、他のSM処理区よりも優れていた。

考察

カンキツにおいては、果実を生食する際や加工するにあたり、無核であることは望ましく、無核性はカンキツの育種目標の中でも最も重要な形質の一つである。ブンタンにおいても、市場や消費者から種の状態果実が求めるされているが、これまで‘土佐文旦’では、種子数の少ない果実は小果となる（岩川，1986）ことから、商品性のある果実を生産するためには人工受粉が不可欠と考えられてきた。

前報（北島ら，2004）では、SM3回処理により‘土佐文旦’の完全種子率が4.3個となり、種子形成の顕著な抑制効果が認められたが、わずかながらも種子形成が認められた。これは、実験に供試した‘土佐文旦’の周辺に受粉樹となる多くのカンキツが混植されていたために種子が形成されたものと考えられた。そこで、他家受粉される可能性が低い‘土佐文旦’の単植園では、SM3回処理による無核果率がさらに高まる可能性が考えられたことから、ほぼ単植園の栽培適期を用いて本実験を行った。その結果、SM3回処理で完全な無核果実となることが認められた。これらのことから、SM処理による‘土佐文旦’の無核果実生産には単植園栽培が望ましいと考えられた。また、単植園では、SM処理密度を1000倍（有効成分200ppm）に下げても安定した無核果が生産できる可能性があり、今後、単植園におけるSM処理密度と回数を検討する必要がある。

ヒュオガナシでは種子形成の抑制を目的に四倍体ナダイタイプ花粉の受粉が行われているが、完全種子形成は抑制されるものの、完全種子が多く食感として無核果と評価し得る場合がある（牧田，1984；Yamashita，1976）。本実験においても、受精胚珠長が2mm未満では食感として無核と感じられて食べやすかったが、3mm以上になると、食べやすく口の中に種子の痕跡が残り、無核とは感じられた種子を取り除くわけにいかなかった。SM処理区では受精胚珠長が2mm未満であり、無核果実と評価された。また、対照区の果実は維管束が発達して果実部が硬くなったが、SM処理区の果実は維管束の発達が認められず、果実部が柔らかかった。このことから、維管束の発達が果実内の完全種子や不完全種子の有無と関係していると考えられる。すなわち、人工受粉によって果実内で種子が存在すれば、種子発育のために果実部の維管束には多くの養分が転流することとなり、維管束が発達して果実部が硬くなるが、SM処理による無核果実では完全種子や不完全種子が存在しないために果実部維管束は発達せず、果実部が柔らかいままであると考えられた。さらに、‘土佐文旦’では、受粉2週間後の種子（胚珠）長が5mm以下のものほぼ真実種樹体により不完全胚珠であることが（山崎，未発表）。本実験の対照区で5mm以下のものを不完全胚珠として調査した。その結果、対照区の不完全胚珠長は2〜5mmであり、SM処理区よりも明らかに大きかった。その原因として、対照区では完全種子や不完全種子の存在により維管束が発達し、その維管束系にある不完全胚珠はその養分の一部を受容するため、種皮がやや発育したものと推定された。このようにSM処理により‘土佐文旦’を完全無核果にしては、食べやすいという利点を有するだけでなく、果実部が柔らかいことで、じょうどうの分離が容易になるといった副次的効果も認められ、市場や消費者にとって非常に優れた特長を示した。

岩川（1986）は、‘土佐文旦’樹の一部の果実を花粉遮断するとほとんど結果しないことから、‘土佐文旦’の単株結果力が極めて弱いと報告している。しかし、岩政・大庭（1980）は、‘江上文旦’において花粉遮断により400〜500gの無核果実を生じ、結果率は10〜20%であることを認め、‘江上文旦’はある程度の単株結果力を持っているが、自家不和性であるため単植園栽培での無核果実生産が示唆される。
日本の果実の実質果実の品質

摘要

「土佐文旦」の無核果実の生産について検討するため、単株圃栽培においてストレプトマイシン（SM）処理を行い、果実発育に有効な摘果時期を明らかにした。SM 500 ppm 溶液を液田率 1〜5%、50%および100%のときに動力噴霧器で樹全体に 3 回散布することにより、種子形成が抑制され、完全な無核果実が生産された。また、不愛精胚珠は 2 mm 未満で食べるよく、じょうのうの分離が容易で済みやすかったことが認められた。摘果 4 週間後（6 月 6 日）に果実の果実は 30%以上に達した。さらに、商品性が比較的高い 2L〜4L 果実を含めた合計で 68.7%あり、対照区と大差なく、他の摘果区よりも優れている。SM 処理区の無核果実品質は SM4 区は摘果 2 週後、SM5 区は摘果 1 週間後には有効であったが、SM6 区では摘果後の顕著な増加はみられなかった。これらのことから、無核果実では摘果時期が早いほど果実発育が促進されることが示された。前報（北島ら、2004）の結果よりもさらに早い摘果 4 週間後摘果が有効であることか認められた。

本実験において、SM 処理区で夏秋梢が多数発生し、7月と9月に、夏秋梢の剪除を行う必要があった。これは、6月の摘果後で果実が 120 度寄したため夏秋梢が多数発生したためであり、また、供試した樹が7年生と若木で、栄養成長が旺盛であったこともその一因と考えられた。

夏秋の発生防止果実発育の関係をみとめると、7 月の夏秋の発生は果実発育肥大には明確な影響を及ぼしていたなかった。幼果では果肉の拡大のために夏秋が大きい利用されていないが、成熟では放置しておくと樹勢を乱すばかりでなく、いわゆる病の伝染源ともなるため原則として除去する必要がある（宮田、2000）。'土佐文旦'では、強い夏秋を切らずに放置して先端に果実を残せることで、弓状に曲がった頂点付近に新梢を数本伸ばし、充実した結果母枝を確保するような栽培管理を行っている場合もある（宮地、2001）。しかし、'土佐文旦'の無核栽培においても、摘果数回に分けて行うことで夏秋の発生は抑えられる可能性があり、今後、果実発育に影響を及ぼさない摘果方法について検討する必要がある。

以上のことも、単株圃栽培において SM3 回処理と摘果 4 週間後の摘果により、商品性の優れた 3L 級の無核果実の生産が可能であった。今後、低濃度の SM 処理や処理回数の軽減および摘果方法について検討が必要である。

宮地正憲. 2001. 第2章 投佐文旦の栽培管理 5. 剪定 p. 33-38 ぶんたん王国 高知

谷田明義. 2000. 花勢と夏秋梢の発生 p. 175-178 果樹園芸大百科1 カンキツ 農文協 東京

高山均昭・藤田克治・伊藤秀夫. 1965. 温州ミカンの隔年結果に関する研究 第5報 摘花果および収穫時期と花形成について 园学雑 34: 1-7

高木信雄・政本泰幸・藤井栄一・菊池泰志. 2003. 不知火とポンカンの早期1回摘果による大玉果生産と減酸促進 园学雑 72 (別2): 306