高密度微動観測結果による地盤の卓越周期と未固結層厚の関係
Relationship between Thickness of Alluvium and Predominant Period
Based on High Density Microtremor Observations.

○栗山利男1, 上野直洋2, 松田謹3, 山本俊雄4, 荏本孝久4
Toshio KURIYAMA1, Naohiro UENO2, Iware MATSUDA3, Toshio YAMAMOTO1 and Takahisa ENOMOTO4

1構造計画研究所防災ソリューション部
Department of Disaster Prevention Solution, Kozo Keikaku Engineering Inc.
2神奈川大学大学院工学研究科
Engineering Course of Graduate School, Kanagawa University
3関東学院大学名誉教授
Emeritus Professor, Kanto Gakuin University
4神奈川大学工学部
Faculty of Engineering, Kanagawa University

H/V spectral ratios of microtremors were obtained in the Yokohama City. Relationship between their predominant periods and the total thickness of the latest Pleistocene and Holocene deposits was explained by the equation Y=A*X+B. X and Y mean the total thickness and the predominant period, respectively. The values of A and B as well as the correlation coefficients reflect historical development of landforms and soils. This result brings us that more effective use of microtremor observations is possible for seismic microzonizing.

Keywords: Microtremor observation, Predominant Period, Unconsolidated Soil, H/V spectrum

1. はじめに
各種構造物の地震被害の原因分析や地震被害予測を行うには、対象地域の表層地盤の地震動特性（卓越周期）を把握することが重要である。表層地盤の卓越周期は、ボーリング調査やPS検層などから、対象地点の地盤構造（せん断波速度構造）を推定することによって算定することができるが、これらの地盤調査には、相応の期間とコストを要する。一方、簡易的に地盤の卓越周期を算定する方法として、時常微動観測に基づくH/Vスペクトルを用いる方法がある。一般に、表面波成分が優勢であり特に比較的軟弱な堆積層が堆積する地盤構造においては、H/Vスペクトルより地盤構造の卓越周期を推定することが可能であると考えられている。筆者らは、これまでに時常微動観測に基づき地盤構造特性を把握し、ミックス・マイクロゾーンングに活用することを検討してきた。都市に普遍的に存在する構造物を対象とするミックス・マイクロゾーンングでは、いわゆる工学的基盤上の堆積層が対象となる。これらの堆積層は、丘陵地、台地、低地の地形を構成している。これらの地形の形成史は、気候変動とそれに伴う氷河性海面変動による海面高さの昇降、地殻変動による隆起や沈降の影響を強く受けている。すなわち、これらの外的条件に地形を造り出した河川がどう反応したかにより地盤条件は異なる。

本研究では、横浜市を対象に実施してきた高密度微動観測結果に基づき地盤の卓越周期を算定し、その分布について検討を行うとともに、低地および台地を対象として、それぞれの地域の地形の成立とそれを考慮した地形区画を行い、地形ごとに堆積層厚あるいは未固結層厚と常時微動観測から求まる卓越周期との関係を整理した。

2. 橫浜市の地形・地質と高密度微動観測
(1) 地形・地質概要
図1に横浜市内地形・地質図を示す。横浜市内は、丘陵地と台地が市域全体の約7割を占め、残りの3割が河川に沿った沖積地低地と臨海部の埋立地から成っている。丘陵地は市域中央部やや西に分布し、市域を南北に縦断する。北側の丘陵地は多摩丘陵の南端に位置し、南側の丘陵地は三浦海岸に続く三浦丘陵の北端に位置している。台地と段丘は丘陵地の東西にある。東側の台地は下市川台と呼ばれ、西側の台地は相模野台地の東端にあたる。これらの丘陵地と台地は浸食が進み、谷の地形は樹状状に広がり起伏した堆積地形を形成している。河川及びその支流は下川浸食が進み、河川に沿う河床が形成されている。地質はは上総層群が下段地帯に堆積し、相模層群が不整合に覆い丘陵地と台地を形成している。低地には丘陵地や台地を包む河川の谷底低地と沿岸部の海岸低地がある。沿岸部には軟弱地盤地域が広がり、その厚さが深い地域で40〜50m程度に達している。また、海岸部には埋立地が造成され海岸線はほとんどが人工化されている。

(2) 高密度微動観測
高密度微動観測は、横浜市の詳細な地盤構造特性を明らかにすることを目的として、平成17年度から神奈川大学住之江研究室において順次実施してきた。観測点は横浜市全域を约250mメッシュで区切り、その中心付近を含み、地理的な条件などにより観測不可地点を除いた約6500地点とした。また、時常微動観測はサーバープレード法を用いて、サンプリング周波数100Hz、観測時間180秒とした。

NII-Electronic Library Service
3. 地盤の卓越周期

(1) 卓越周期の分布

図2にH/Vスペクトルから判読した卓越周期を示す。西部から東部へかけて、卓越周期が長くなる傾向が認められる。この傾向は横浜市地形成層の特性である台地・丘陵地を含む広範である河川の流域に沿って顕著である。鶴見川、田子川などの代表的な河川流域の地域についてみると、台地・丘陵地域（河川上流域）では卓越周期は短く、下流になるにつれて長くなる。一方、横浜市南西部においては内陸部においても卓越周期が長いた地域が見られる。これは、台地・丘陵地の表面にローム層が厚く堆積していることによると考えられる。

(2) H/Vスペクトルの分類

H/Vスペクトルについて表1に示すように、明瞭なピークが認められる場合（Type-1: 易容に卓越周期が判読可能）、2つ以上多数のピークが認められる場合（Type-2: 専門的知見に基づき卓越周期の判断が必要）、ピークが認められない場合（Type-3: 卓越周期は判読不可）に分類した。表1にタイプ別の観測点数を示す。表1よりH/Vスペクトルから容易に卓越周期が求められる地点は1670点（約26%）、ピークが2つ以上あるが専門的知見（対象地域および周辺のポーリング柱状図、地形、地質情報など）から卓越周期推定可能な地点が4476点（約69%）であり、H/Vスペクトルから求められる卓越周期は判定不可能な地点は318点（約5%）であった。

(3) 地形分類の調査

図3にType-1とType-2の分布図を示す。図3よりType-2が支配的な地域については局所的に認められが、Type-1が支配的な地域を特定できない。横浜市の地形を表2に示すように丘陵地、台地、低地に分類し、Type-1となる観測点の比率を求めた。その結果、Type-1となる観測点が比較的多いのは丘陵地（39%）、台地（45%）となった。一方、丘陵地3ではType-1となる地点は9%とほとんどなく、台地3でも28%である。よって、単に丘陵地、台地といった地形分類とH/VスペクトルのTypeには対応関係は認められない。

図1. 横浜市の地形成層

図2. H/Vスペクトルから判読した卓越周期

表1. H/Vスペクトルのタイプ

<table>
<thead>
<tr>
<th>H/Vスペクトルのタイプ</th>
<th>観測点数</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1</td>
<td>卓越周期が容易に判読可能</td>
<td>1670</td>
</tr>
<tr>
<td>Type-2</td>
<td>専門的知見に基づき判読可能</td>
<td>4476</td>
</tr>
<tr>
<td>Type-3</td>
<td>判読不可</td>
<td>318</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>6464</td>
</tr>
</tbody>
</table>

表2. 地形とType-1となる観測点数

<table>
<thead>
<tr>
<th>地形</th>
<th>構成層</th>
<th>観測点数</th>
<th>Type-1</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>丘陵地</td>
<td>土室・土壌ローム層、戸塚、寺尾・寺尾ローム層、錦見・錦見層</td>
<td>241</td>
<td>94</td>
<td>39%</td>
</tr>
<tr>
<td>丘陵地2</td>
<td>多摩2ローム層、おしむま砂礫層、山王台砂丘層、山王台ローム層、上金田層</td>
<td>704</td>
<td>203</td>
<td>29%</td>
</tr>
<tr>
<td>丘陵地3</td>
<td>層島崎砂礫層、長沼層</td>
<td>227</td>
<td>21</td>
<td>9%</td>
</tr>
<tr>
<td>丘陵地4</td>
<td>上金田層</td>
<td>1320</td>
<td>207</td>
<td>17%</td>
</tr>
<tr>
<td>台地1</td>
<td>立川ローム層、群馬層</td>
<td>31</td>
<td>14</td>
<td>45%</td>
</tr>
<tr>
<td>台地2</td>
<td>萬葉ローム層、上部・中層</td>
<td>581</td>
<td>196</td>
<td>34%</td>
</tr>
<tr>
<td>台地3</td>
<td>下末吉ローム層、下末吉層</td>
<td>818</td>
<td>227</td>
<td>28%</td>
</tr>
<tr>
<td>低地</td>
<td>低地</td>
<td>2314</td>
<td>708</td>
<td>31%</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>6148</td>
<td>1670</td>
<td>27%</td>
</tr>
</tbody>
</table>
4. 卓越周期と表層地盤の関係

(1) 計測方法
都市に普悠不存在する低層・中層の建物の地震被害に重要となる2秒程度以下の周期帯を対象とした場合、地盤の卓越周期は表層部の堆積物の性質（主に岩相と硬さ）と厚さのに存すると考えられる。そこで、常時微動観測に基づくの卓越周期を\(Y (\text{秒}) \)、沖積層厚を\(X (\text{m}) \)として、

\[Y = AX + B \quad \cdots \cdots (1) \]

の回帰式で、両者を関係付ける。\(A \)の値は堆積層1mあたりの卓越周波数への寄与率を示し、沖積層のS波速度に逆比例する。また、\(B = 0 \)ならば堆積層の平均S波速度は4Aになる。\(B \)は沖積層よりも下位の堆積物の卓越周期の寄与率を示す。またAは相関係数を表す。基盤N値50以上の固結シルトもしくは固結砂層とし、その上を覆う堆積物を沖積層とする。なお、沖積層厚については、横浜市が行なったポーリング調査のデータを参考にした。

(2) 低地の沖積層厚と卓越周期
本研究では、図1示す鶴見川低地、金沢低地、大岡川低地、帷子川低地を対象とした。なお、鶴見川低地については、堆積物の特徴から上流部・中流部・下流部に区分した。各低地の沖積層厚と卓越周期の関係を図4に示し、回帰式の係数\(A, B \)の値、平均せん断波速度、関係係数を表3に示す。図4より帷子川低地、大岡川低地、鶴見川低地を対象とした回帰式の傾きは他の低地よりも大きく（係数\(A \)が大）、卓越周期は沖積層厚に大きく依存している。また、帷子川低地と大岡川低地の回帰式の係数は\(A, B \)ともにほぼ同じ値となっている。これは図5に示すように両者の堆積物、堆積年代が同じ構成をしていることによる。どちらも下向き台地を形成している小河川の谷底低地であり、小河川であるので堆積物は粘土・シルトからなる。また、各下流部は掘り流れ（約1万〜5500年前）に入り江となり軟弱な堆積物が形成された。

鶴見川低地上流部は係数\(A \)が最も大きかった。これは\(N \)値の絶対値が小さい有機質土の堆積によるものと考えられる。鶴見川低地上流部は、中流部・下流部にいくら海面の昇降・沈降の影響をあまり受けておらず、シルトや砂層の上に有機質土が堆積している。

鶴見川中流部、下流部、金沢低地については係数\(B \)がそれぞれ異なるものの、係数\(A \)についてはほぼ同じ値となった。図6に古多摩川谷沿いの地質断面図を示す。図6の下流側が鶴見川低地上流部に該当する。また図7に金沢低地の地質断面図を示す。これらの地盤では、堆積層の層構造や堆積年代が近く、鶴見川低地上流部と金沢低地は、最終氷期末期（約1.8万年前）に河川が形成した深い谷の上に堆積層が堆積し形成された地形である。
下末吉台地は、最終間氷期（12〜13万年前）に浅い海底であったところが隆起して台地となった。台地を構成している堆積物は海成の砂やシルトを主体としている。一方、相模野台地は約1〜8万年前に気候変化や相模川の流路変遷に伴い、下刻と堆積が何度も繰り返され数段の成層丘より成っている。そしてどちらの台地も表層は厚さ1〜5mほど関東ローム層に覆われ、関東ローム層以下の堆積物は下末吉台地は海成層、相模野台地に疎層が堆積している。下末吉台地、相模野台地とともに係数Aの値が同様の値となり、卓越周波数は0.2〜0.5秒の範囲内で分布しており、相関係数は小さい。両台地とともに係数Aが小さく、係数Bが大きくになっているのは、ローム層が低地の疎層よりも弱いことと、それぞれの台地を構成する関東ローム層以深の構成層の影響が大きいためと考えられる。

5. まとめ

本研究で得られた知見を以下にまとめる。
1) H/Vスペクトルから求めた横浜市の地盤の卓越周波数の分布は、横浜市の地形・地質および地盤の性状に基づく分布傾向を示し、西部の台地・丘陵地から中央部の低地に至る地形・地質の変化に河川の堆積過程と関連する卓越周波数が関連していることが認められた。
2) H/Vスペクトルを用いて地盤の卓越周波数を容易に推定することができる地点は横浜市においては全体の1/4程度であったが、ポーリング柱状図や周辺の地形・地質や地盤情報などを参考にすれば卓越周波数の推定が可能な地点を含めると、約95%の地点で卓越周波数を推定することができ、常時動測観測は地盤の卓越周波数を知る手段の一つとなることが確認できた。
3) 地形形成史を考慮して区分した各河川の低地および台地について堆積層の厚さと卓越周波数との関係を回帰式で関係付け検討した結果、係数Aは、帷子川低地と大岡川低地で同じ値となり、これは両者の堆積層が同じ構成をしていることに一致する。また、相模川中流部・下流および金沢低地では係数Bは異なり、係数Aは同様の値を示した。このことは、これらの地域の堆積層の層構造や堆積年代が類似していることから説明できる。
4) 台地の係数Aは低地よりも小さい。これは台地の表層部の堆積層が堆積地の堆積層よりも固結が進んでいることと調和する。また、台地では相関係数が小さく、常時動測から得られる卓越周波数は下末吉台地（関東ローム層）で大きく依存していない。また係数Bが大きく、回帰式から求めたせん断波速度が700m/s程度を示すことから、台地での常時動測観測による卓越周波数は、ローム層以深の地盤構造を反映したものと考えられる。

以上述べたように、常時動測観測から得られる卓越周波数は、地形の成り立ちや堆積物の性質などに依存していることを明らかにし、地形形成史を考慮することの必要性を示した。

参考文献
1) 横浜市環境研究所：横浜市地形地質図、2004年
2) 横浜市：横浜市地盤地層情報、地盤View
3) 上野雄和他：マイクロソニニングにおける動測活用法の検討 その1 横浜市を対象とした高密度観測、地域安全学会論文集、No.27, 2010.11
4) 山本雄矩他：マイクロソニニングにおける動測活用法の検討 その2 地形・地質条件からのアプローチ、地域安全学会標新集、No.27, 2010.11

表4 台地の回帰式の係数

<table>
<thead>
<tr>
<th>台地</th>
<th>A</th>
<th>B</th>
<th>Vs</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>下末吉台地</td>
<td>0.049</td>
<td>0.275</td>
<td>784.3</td>
<td>0.49</td>
</tr>
<tr>
<td>相模野台地</td>
<td>0.058</td>
<td>0.1981</td>
<td>689.7</td>
<td>0.46</td>
</tr>
</tbody>
</table>

(3) 台地の未固結層厚と卓越周波数

本研究では、下末吉台地と相模野台地を対象とした。台地の未固結層厚と卓越周波数の関係を図6に、回帰式の係数、平均値断波速度、相関係数を表4に示す。なお、台地には他層が分布していないので、下末吉台地では関東ローム層を伴成層、相模野台地では関東ローム層を未固結層として検討を行なった。

まず、台地では回帰係数Aの値が低地よりも大きく、相関係数も大きくなっている。これは、台地の表層部の堆積層が堆積地の堆積層よりも固結が進んでいることと調和し、台地の卓越周波数は表層部の堆積層厚に低地ほど大きく依存しないことを示している。

図6 古河摩川谷の地質詳細図

図7 金沢低地の地質詳細図

図8 台地の未固結層厚と卓越周波数

NII-Electronic Library Service