3D11-3
酵母膜細胞質プロテオシによる炭化水素化合物の代謝経路展開
○谷村 未也1, 沢野 真澄1, 柴田 拓也1, 田村 泰也1, 清水 昌1
1(京大)農・応用生命, 2花王・生物科学研究

【目的】プロテオシの優れた石油分解能に関する研究はこれまでに報告されているものの、その成分であるα-アルギン酸の代謝経路については明らかにされていなかった。そこで、本研究では様々なプロテオシのα-アルギン酸の質験的と代謝繊維の展開を行った。さらに、α-アルギン酸以外にもアルギン酸、フェルメントアルギンに対する代謝経路の展開を行った。

【方法・結果】4%のα-アルギン酸を添加したCYS培地培養(グルコース9%、アサヒエキス1%)で、21日目のプロテオシを28℃で5日間培養促進する。また、培養基はα-アルギン酸、アルコールを15N-MNRで篩定することで、化合物3はα-アルギン酸、化合物2はα-アルギン酸であると同定した。さらに、α-アルギン酸とアルコールを同定することで、プロテオシには5位アミノ酸を持つ物質として特異的なα-アルギン酸代謝経路を存在することが同定された。加えて、α-アルギン酸以外の炭化水素化合物をCYS培地培養に添加して代謝能を評価したところ、アルギン酸フェルメントアルギン酸が効率よく代謝され、同時にいくつかの未定物質が検出された。現在、それら未定物質の同定を試みている。

Elucidation of metabolic pathways of hydrocarbons by micro-algae Protoclea
Key words Protoclea, oxidation, alkane, hydrocarbon

3D11-4
Penicillium 属水状菌に特徴的な n-alkane 資化経路の展開
○橋本 茂1, 沢野 真澄1, 柴田 拓也1, 田村 泰也1, 清水 昌1
1(京大)農・応用生命, 2花王・生物科学研究

【目的】Penicillium 属の水状菌いくつかはsubterranean環境経路によってn-alkaneを資化することが報告されている。この場合、n-alkaneのc28, c30, c32の水素代謝を示す代謝経路が示唆されているが、代謝経路の詳細は解明されていない。本研究では様々なPenicillium属水状菌のn-alkane資化能の評価と代謝経路の展開を行った。

【方法・結果】n-alkaneを試験培地に添加したculture(2% n-alkane)の代謝経路を示す。Penicillium 属水状菌を28℃で21日間培養後、代謝生成を確認した。さらに、これらの微生物が代謝する物質を,Penicillium 属水状菌を用いて代謝経路を展開した。さらに、代謝生成の発色反応を示す特徴的なn-alkane代謝経路の存在が示唆された。さらに、n-alkaneと類似した構造を有するalkane © phenylalkaneについても資化能と代謝経路の展開を行った。

Elucidation of metabolic pathways of hydrocarbons by Penicillium
Eiji SAKURADANI1, Nosumo SHIBATA1, Yusuke NATSUME1, Yasushi TAKIMURA2, Sato SAKAMOTO1, 2(Div. Appl. Life Sci., Grad. Sch. Agric., Kyoto Univ., 2Kao Corp. Bio. Sci. Lab.)
Key words Penicillium, oxidation, alkane, hydrocarbon

3D12-1
微細藻 Pavlova sp. の脂肪酸断链酵素遺伝子の油酸微生物 Mortierella alpina 1S-4 での発現
○伊東 義久1, 木村 健也1, 橋本 茂1, 柴田 拓也1, 田村 泰也1, 清水 昌1
1(京大)農・応用生命

【目的】Mortierella alpina 1S-4 は、5,8,11,14-eicosatetraenoic acid (arachidonic acid, AA, 20-4s)のc28, c30, c32のring交換反応を有する微生物である。一方、海洋微生物 Pavlova sp. は、4,7,10,13,16,19-docosahexaenoic acid (DHA, 22-6s)を増殖することができる。これらの微生物の環交換反応が発現するか検証するために、Pavlova sp. PB110444から環交換遺伝子のPJ1をクローニングし、Mortierella alpina 1S-4に導入し、C22PUFAを発現する菌株の育種を検討した。

【方法・結果】Pavlova sp. PB110444 の精製酵素を、PavEL0が共有する環交換遺伝子P1は既報のPavlova sp. CCCM 92046の環交換遺伝子と同定を示した。次に、PavEL0を発現させた菌株は増殖培地のEPAを7,10,13,16,19-docosahexaenoic acid (DHA, 22-6s)に交換できることが示唆された。ただし、環交換遺伝子P1はPavlova sp. SM14 での発現が確認され、これらの環交換反応を示す環交換酵素の発現が確認された。現在、これらの環交換酵素の発現を検討している。

Expression of elongase gene from microalgae Pavlova sp. in oleaginous fungus Mortierella alpina 1S-4
○Kuni ITO, Keita IGUCHI, Hiroaki NEGORO, Akinori ANDO, Eiji SAKURADANI, Sato SAKAMOTO
(Division of applied life sciences, graduate school of agriculture, Kyoto University)
Key words Polysaturated fatty acid, Pavlova sp., Elongase, Mortierella alpina

Conjugated fatty acids production by E. coli transformed with genes from lactic acid bacteria
○Masaaki KAWAJI, Shigenobu KISHINO1,2, Kenzo YOKOZUKA2, Sato SAKAMOTO1
Key words conjugated fatty acid, Lactobacillus plantarum, conjugated linoleic acid, CLA

3D12-5
乳酸酸酵伝子を導入した形質転換大腸菌による共役脂肪酸生産
○矢野 重信1, 梅野 重信2, 緑谷 喜三2, 清水 昌1
1京大農・応用生命, 2京大農・農産業微生物

【目的】我々はこれまでに、リノール酸cis-9,12-ω-12octadecadienoic acid(8:2)を効率よく共役リノール酸C18:2(9-cis,12-trans)およびtrioro-9,12,15-ω-12octadecatrienoic acid(8:3)から直接生産する乳酸酸酵伝子Lactobacillus plantarum AKU1009aを取得し、その遺伝子を、各種に導入してきた。また、乳酸酸酵に関するタンパク質が、3つのC18:4-CLAC-CLAC及びC18:3-CLAC存在を明らかにし、これらのタンパク質を共役する代謝転換酵素を構築した。本式変換大腸菌は、L. plantarum AKU1009aを同様なノール酸を効率よくC18:3に変換することを確認した。本系株と得られた溶液を転換大腸菌を用いて観察することにより、脂肪酸代謝の新たなアプローチを提供する。

【方法・結果】C18:4-CLAC-CLAC及びC18:3-CLACをコードする遺伝子を共役する代謝転換大腸菌を構築し、PIT-1染色により導入する環状ノール酸の酸化を行った。得られた溶液を用いたリノール酸cis-9,12-ω-12octadecatrienoic acid(8:3)にcis-9,12,15-ω-12octadecatrienoic acid(8:3)及びステアリン酸酸cis-9,12,15-ω-12octadecatrienoic acid(8:3)とそれぞれ環交換を反応に供した。その結果、溶液は各基質を共役脂肪酸へと変換することを確認した。これによりL. plantarum AKU1009aが基質をそれら生産する共役脂肪酸と唯一のものであった。

Elucidation of metabolic pathways of hydrocarbons by micro-algae Protoclea
Key words Protoclea, oxidation, alkane, hydrocarbon