総説

腎移植領域におけるアフェレシス

原田浩*・堀田記世彦*・三浦正義**

* 市立札幌病院腎臓移植外科，**札幌北病院腎臓移植外科

Critical Role of Therapeutic Apheresis in Kidney Transplantation

Hiroshi Harada*, Kiyohiko Hotta* and Masayoshi Miura**

* Department of Kidney Transplant Surgery, Sapporo City General Hospital, ** Department of Renal Transplantation, Sapporo Hokuyu Hospital

Summary The shortage of deceased organ donors results in increasing indication of kidney transplantation. The effort to understand the profound mechanism of preexisting antibodies has overcome ABO incompatibility and anti-donor specific antibodies such as the anti-HLA antibody by virtue of the development of immunosuppressants with well-designed therapeutic apheresis (TA). On the other hand, focal segmental glomerulosclerosis, which redevelops even just after transplant, often exhibits severe leakage of urinary protein. TA can decrease the amount of protein leakage and sometimes induce complete remission together with anti-inflammatory agents, including cyclosporine, mycophenolate mofetil and rituximab. Herein, we discuss the role and the practical management of TA in successfully reducing preexisting antibodies and ill-defined but possible permeability factors, which are believed to be important in the development of FSGS.

Key words: kidney transplantation, therapeutic plasma exchange, ABO-incompatible, anti-donor specific antibody, focal segmental glomerulosclerosis

1. はじめに—腎移植とアフェレシス

本邦における腎移植実施数は透析患者数には到底及ばないものの微増を続けている。それに貢献しているのは、生体腎の増加にはかならない。しかも高齢者、なかでも夫婦間の提供が増加している。さらに適合移植と成績は同等とされている血液型不適合間の提供の増加も著しい1,2。また、抗ドナー抗体陽性例では、長期的な生着に関してはまだまだ検討する必要があるものの、周術期の重症の抗体関連拒絶反応の制御は可能となっている3。これには新規の免疫抑制剤を含む脱感作プロトコールが必要であるが、アフェレシスによる抗血清型抗体や、抗ドナー抗体の主体とされる抗HLA抗体の除去が欠かせない。さらに、移植腎には原疾患の再発が発症する場合があり、IgA腎症や巢状系球体硬化症（FSGS）はその代表である。中でもFSGSは発症した場合、しばしば重症となり、ネフローゼ症候群を呈する場合も多い。その発症要因としての循環因子（circulating factors：CFs）の除去が有効とされる4。昨年来国アフェレシス学会（ASFA）のガイドラインが発表されているが5、腎移植に関わる治療的血漿交換（TPE）の適応は上記の三疾患をあげている。これらにつき、その疾患と腎移植の背景、アフェレシスの意義、現在の治療方針、アフェレシスの実際につき、本邦での状況、さらには当科での知見も加えて紹介する。

2. ABO不適合腎移植

2.1 ABO血液型と腎移植の背景

腎移植は一卵性双胎間の場合を除き、同種腎移植であり、同種免疫応答を可及的に抑え、拒絶反応を予防するために、従来、ドナーとの可能な限りの抗ヒト白血球抗原（HLA）と、血型的一致が条件としてきた。献腎移植ではHLAよりも待機期間が重複されているが、血型の一致が原則である。しかし、特に献腎ドナー不足が続く本邦においては、ABO血液型不適合ドナーからの生体腎移植は30%を越え、その成績は適合移植と同等とされ、貴重なソースとなっていている6,7。

2.2 アフェレシスの意義

ABO式血液型抗体は1900年にLendsteinerにて発見された糖鎖性物質である。O型ではA, B両抗原
の前駆物質である H 抗原を有し、A, B 型ではそれぞれの遺伝子により A, B 転移酵素の産生を行い A型抗原決定基である GalNAc および B 型抗原決定基である Gal を H 抗原に付する。これらに対し A 型は抗 B 抗体を有し、B 型では抗 A 抗体を有する。O 型は抗 A, 抗 B 型抗体両者を有し、AB 型では抗血液型抗体会有さない。なお、ABO 血液型異なは血液肉質は赤血球のみならず、細血管内皮、尿細管上皮、集合管上皮にもみられるために、輸血の組み合わせ同様、臓器移植でも図 1 に示すとおりに、適合および不一致の場合は問題がないが、それ以外の不適合の組み合わせの場合には、抗体関連拒絶反応が起こる。よって、術前の抗体の産生の低下置換物および抗体の除去が必要となる。除去対象物質は抗血液型 A 抗体および抗血液型 B 型抗体であり、IgG および IgM 分画成分である。なお、A, B 型とも転型が明らかにされており、特に A 型には 90% の A 抗原、10% の H 抗原を有する A1 型、20% の A 抗原、80% の H 抗原を有する A2 型型が存在し、白人では A2 が 20% 存在し、低抗原性のために好まれるが、日本人では 0.15% に過ぎない。

2.3 現在の治療方針
ABO 不適合腎移植では術前抗体産生の低下および十分な除去が必要である。各施設によってもレジメンは異なるが、基本的には十分な免疫抑制剤に加え、アフェレシスの施行に尽きる。当科での脱感作プロトコールの基本を図 2 に示したが、2 間隔前よりの免疫抑制剤（ミクロフェノール酸モフェチル：MMF、メチルプレドニゾロン：MPZ、タクロリムス併用剤：TACER）を服用し、アフェレシスは抗体価にもとるが、術前 1 〜 4 回行う。なお、健康診断にて承認されているアフェレシス回数は術前 4 回、術後 2 回までである。従来は術後に抗体産生の場である脾臓の摘出手を行っていたが、現在ではこれに替わりリツキシマブ（RIT）を手術 6 日前に 100 mg 投与している9,10) RIT は B 細胞表面に発現する抗 CD20 抗体であり、形質細胞にはその発現はなく、完全に代償となる。

図 2　ABO 不適合腎移植の脱感作療法を含む腎移植免疫抑制プロトコール
免疫抑制剤は 2 間隔前より開始し、リツキシマブを 6 日前に 100 mg 投与する。アフェレシスは術前 2 〜 4 回行う。TACER：タクロリムス併用剤、MMF：ミクロフェノール酸モフェチル、MPZ：メチルプレドニゾロン、BSX：バシリキシマブ、RIT：リツキシマブ、THP：治療的アフェレシス、H2block：H2 ブロッカー、ST：ST 合剤。

表 1　ABO 不適合移植における抗体除去療法の比較

<table>
<thead>
<tr>
<th></th>
<th>単純血漿交換 (PE)</th>
<th>二重濾過血漿交換 (DFPP)</th>
<th>血漿吸着 (PA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗体除去効率</td>
<td>高</td>
<td>高</td>
<td>中</td>
</tr>
<tr>
<td>置換液</td>
<td>FFP</td>
<td>Alb 希釈液</td>
<td>不要</td>
</tr>
<tr>
<td>腦内抗原低下</td>
<td>なし</td>
<td>低下 (11 〜 12% 程度)</td>
<td>不変</td>
</tr>
<tr>
<td>アナフィラキシー</td>
<td>なし</td>
<td>ほとんどなし</td>
<td>不変</td>
</tr>
<tr>
<td>感染症リスク</td>
<td>なし</td>
<td>低率</td>
<td>不変</td>
</tr>
<tr>
<td>抗体除去選択性</td>
<td>低</td>
<td>低率</td>
<td>不変</td>
</tr>
</tbody>
</table>

文献 12) を改変し引用。

日本アフェレシス学会雑誌 30 卷 2 号 (2011) 117
2.4 アフェレシスの実際

抗血球型抗体は赤血球凝聚法を用いた生食法、間接クームス法にて行われることが多い。抗A、抗B抗体を除去するアフェレシスとして、1) 単純血漿交換（PE）、あるいは2) 逆流適応血漿交換（DFPP）、さらに3) 血漿吸着療法（PA）があり、表1には様々な特徴を記した。

2.4.1 単純血漿交換

膜型血漿分離器を用い、循環血漿量の1から1.5倍の置換を50～50 ml/minの血流量で行う。置換液はヒト凝集血漿（FFP）で行うことが一般的である。当然ながら当該除去抗体を有さないFFPが必要となる。かつA、B型相互の不適合の場合はドナーと同一の血液型ではレシピエント側で溶血が生じることになる。よってこれらの場合はAB型のFFPを用いる。レシピエントがO型の場合のみドナーと同一血液型血漿で構わないので、リスクマネージメントの観点から当院ではいかなる場合でもAB型のFFPを用いている。しかし、AB型血液製剤はその人口比から貴重であるがゆえ、再考が必要である（表2）。なお、FFPにはクエン酸が大量に含まれ、血中のカルシウムとの結合の結果による低カルシウム血症が速発である。テナー症状を呈するため、予防として20単位あたりグルコン酸カルシウム1万mg以上の投与が必要である。施行中もカルシウムのモニターが必要であり、適宜投与を追加する。なお、血液透析と並列の施行を行う場合は、カルシウム補正が成されるため有用である。
また、FFPは同種献血製剤であり、アレルギー反応による悪寒感、悪寒症等が生じることがあり、適宜、抗ヒスタミン剤、時にステロイド剤を必要とする。またウィルス感染症のリスクは念頭に置く必要がある10)。

2.4.2 二重濁過血漿交換

PEでは上記の有害事象が避けられず、FFPも貴重であるために、25%アルブミン液を細胞外液組成補液製剤にて希釈した置換液を用いている。濃厚な場合にはより貴重な血液製剤の浪費につながり、逆に希薄な場合には膜質浸透圧が低下し、施術中の血管内脱水による血圧低下などの症状が出現する。一般にはDFPPでは7～10%程度の希釈アルブミン置換液が推奨されているが、明確な基準はなく、実際はクロブリンのみならず相当のアルブミンが喪失される。循環血漿量(BV)の大きな減少はDFPP中の低血圧や、倦怠感などを招くことが明らかで、このBVの減少を10%以内とするのが、これらの有害事象を防ぐため必要であるとは、君川らにより、明解に述べられている3)。彼らの想定する式によると、体重50kg、血清アルブミン濃度が4.0g/dlの患者がIgGの70%を除去すると想定し、BV減少を10%以内にするには11.4g/dlの希釈アルブミン液700mlを必要とする。やはり、安全なPEのためには1～12.5%前後のアルブミン濃度が望ましい16)。

われわれは自身例からDFPP時の体重当たり置換量によるIgG、IgMの除去率を求めた。さらに、ヘマトクリット変化で換算されるBV減少を10%以内に抑え、やや総蛋白量の減少を90%以内に留めるための、アルブミン投与量算出式を導き出し、投与量を決定している（図3）17)。健康保険の範囲で認められる25%アルブミン（50ml）本数は体重、除去率に関わらず制限があり、適応本数の拡大が急務である。なお、DFPPの変法である血漿冷却濁過法も、ABO不適合移植に用いられている19)。

2.4.3 血漿着吸着療法

上記の方法はいずれにせよ、血液製剤の使用は免れず、DFPPにおいては凝固因子の喪失も起こるために、より選択的な造血の除去が望ましい。かつて、抗血型A型、B型抗血漿に対する選択的血漿成分吸着器であるBiosynsorbTMが開発され、治験も行われたが、保険適応とはならなかった。しかし貴重な血液製剤の使用を抑えるため、血漿製剤による感染症の伝播の抑制のためには、非常に理につけた吸着法であり、再度の臨床試験がなされており、保険収載が待ち遠しい。欠点としては、EOG減菌であるために、EOGアレルギーのある患者での使用は不可能であり、またACE阻害薬服用中の患者には禁忌であることが言われている40)。

3. 抗ドナーHLA抗体陽性腎移植

3.1 抗ドナーHLA抗体と腎移植の背景

同種片を移植することがほとんどであるヒト腎移植においてドナー特異的抗体（DSA）が移植後問題となることがある。なおDSAの90%は抗HLA抗体であるとされている3)。難治性の急性排反応に関わり、慢性の排反応はDSAによる関連速排反応であり、従来はその進展に限界があったが45)、現在では強度の弱い抗HLA抗体を測定することが可能となっており、このDSAの意義を理解し、正しい測定により腎移植の方向を決定しなければならない。

3.2 アフェレシスの意義

非自己の同種組織に暴露されなければ通常は存在しないDSAは過去の同種血輸血、臓器移植、妊娠などで感作されると産生される場合があり臓器移植では問題となる。なぜなら、通常の古典的排反応であるT細胞性排反応は、発症には数日を要すること、その攻撃の対象は多くは尿細管、間質であること、T細胞の活性化を端的にした免疫抑制剤は予防薬治療薬とも比較的数多くあることから排反応が発症しても治療が可能な場合が多い23)。DSAはその強度、親和性に由るが、移植直前から関連排反応を発症させる、その模様の血管内皮が主体となることが多く、血栓の形成から重篤な排反応、ときには移植機能喪失となることもあるのである24)。さらに、長期の抗体の存在は慢性抗体関連排反応を引き起こす25)。なお、抗ドナー抗体測定法はその感度の弱い順に、NIH-CDCクロスマッチ、AHG-CDCクロスマッチ、フローサイトメトリーによるリンパ球（T細胞）

日本アフェレシス学会雑誌 30巻2号（2011）
胞、B細胞）クロスマッチ（FXm），人工ビーズを用いたFlowPRTスクリーニング®，FlowPRAシングルアンチゲン®，Luminex®測定装置を用いたLABScreen®。一般的にはNIH-CDCクロスマッチが陽性な場合はほぼ腎移植の適応がないとする。また、微弱な抗体は除去せず腎移植が可能であるため28，実際はFXm陽性の場合にはアフェレスシを行い、免疫抑制剤などの使用とともに脱敏作を行ってい る29。アフェレスシの意義は可及的に抗体価の除去を行うことで、IVIGとの併用の有用性はMontgomeryらにより示されている29。抗血清型抗体と異なり、抗HLA抗体は定量が困難であったが、Luminex®によりMean flow intensity（MFI）を算出し、この数值が目安となる27。

3.3 現在の治療方針

ABO不適合腎移植同様DSA陽性症例でも、術前の抗体の産生の低下および十分な除去が必要である。当科の脱敏作プロトコールの基本を図4に示した。2週間前よりの免疫抑制剤（MMF、MPZ，TACER）を服用し、アフェレスシは抗体の強度にもよるが、術前2〜4回行う。なお、ABO不適合腎移植同様、健康保険にて承認されているアフェレスシ回数は術前2回，術後1回までである。やや脱敏の替わりにRITの投与を行うが、手術6日前に加え前日にも100mgを投与している。なぜならば、ABO不適合腎移植のように明確なアコモデーションの概念が確立されていないため、長期にわたる抗ドナー抗体の除去が必要となるためである。また静脈内免疫グロブリン（IVIG）療法の併用はJordanらにより腎移植の有用性が示され28，当科のDSA陽性腎移植のレジメに採用しているが、保険適応となっている点が問題である。なお、本邦では使用が不可能であるが、抗体の低下の困難な症例には新薬の薬剤であるプロテアソーム阻害薬bortezomib、抗補体C5抗体eculizumabの使用が試みられている29。

3.4 アフェレスシの実際

抗HLA抗体を除去するアフェレスシとしては1）単純血漿交換（PE）、あるいは2）二重濾過血漿交換（DFPP）がある。詳細は図2A BO不適合腎移植を参照されたい。なお術前にはFXmが陰性となることを原則としている。また、腎移植後は抗体関連拒絶の治療の主要であるアフェレスシによる抗体の除去において、MPZパルス療法などの拒絶療法が治療の主体を成す。特に術後早期は出血リスクの回避の観点から凝固因子の喪失のないPEを用いることが多い。なお、現在でも献腎移植における日本臓器移植ネットワークでのルールは、強度のDSAの存在例は、選択基準に含まれるが、それより弱いが臨床的に意義のあるDSAの存在は考慮される。特に透析期間が延長し輸血の機会が多いドナーが選ばれる頻度が増加しており、ルールの改善が待たれる。しかし、心臓死ドナーが多い本邦での献腎移植においては、DSAが陽性であっても、術前の十分なアフェレスシを行う時間的余裕はいないとも事実である。なお血液吸着療法としてProtein-Aカカラの有用性が高められているが30，本邦においては未発売である。

4. 巣状系球体硬変症に対する腎移植

4.1 巣状系球体硬変症と腎移植の背景

巢状系球体硬変症（FSGS）はネフローゼ症候群の20〜30%を占める31。FSGSを原疾患とする末期慢性腎臓病に対する腎移植数はIgA腎症や、近年増加傾向にある糖尿病性腎症を原疾患にする場合に比べ、それほど多くはない。FSGSの腎移植後の再発率は20〜30%であり、IgA腎症には及ばないが、再発した場合の機能喪失率が高く、しかも、移植当日からのネフローゼレベルの蛋白漏出が未解決である31。このため、原疾患がFSGSと病理組織学に判明している場合は、その予防措置がなされるが、FSGSの原因物質を完全に同定することは困難である。しかし、30〜
50 kDa の蛋白質であることは Sharma らにより報告
がなされ 6、実際にプロテイン A カラムによる免疫吸
着療法や、血漿交換によりネフローゼ状態が覚解され
ることより蛋白の系球体よりの透過性を亢進させる因
子の存在を裏付ける 20。ASFA のガイドラインもそ
の症例報告や臨床的な後方視的な報告より、TPE の推奨レベ
ルは高めに設定している 5。

4.2 アフェレシスの意義
上記の通り、その責任物質は完全には同定されてい
ないものの、蛋白負荷の制限、種々の薬剤（ARB/
ACEI、シクロスポリン、MMF、RIT）とともに分子
量 30 〜 50 kDa の CFs をアフェレシスにて除去するこ
とで、再発後の蛋白尿のコントロールが可能である 31。
ときに完全覚解となることもある。また、別項に譲る
が本邦での FSGS を含むネフローゼ症候群に対する
LDL アフェレシス療法は一定の効果を上げている 30。
なお、FSGS に対するアフェレシスは 3 か月間で 12
回の治療が保険収載されている。

4.3 現在の治療方針
まず、病理組織学的に FSGS が明らかとなってい
る場合にはその悲劇的な再発を避けるために、予防措
置をとる 32。かつては、自己腎が免疫原性を持ちその
再発に寄与しているとの観点からまず両側自己腎摘
行ったのちに、移植 1 週間前から免疫抑制療法を行い
PE を数回併用し腎移植を行い、さらに移植当日には
脾摘を行ったが、現在では自己腎摘を行っていない。
また原因物質が明らかでない以上、脾摘を行うエピデ
ンスもなく行っていない。なお、現在ではほとんどの
例で使用している抗 CD25 抗体は活性化 T 細胞のみ
ならず制御性 T 細胞（Treg）にも発現しており、こ
の Treg が実験的モデルの発症をコントロールしてい
るとの報告 33、およびむしろ抗 CD25 抗体を使用して
いなかった過去の症例の方が FSGS の発症が低かっ
たとする臨床報告 30 から当科では FSGS を再発不す
る腎移植の場合には抗 CD25 抗体を使用しないレジメ
ンで行っている 37（図 5）。まだまだ症例の蓄積が必
要であるが、少なくともこの方法で行った症例に関し
ては再発を認めていない。

図 5 巣状系球体硬化症に対する腎移植発症抑制プロトコール
免疫抑制剤は 1 週間前より開始し、アフェレシスは術前
2 〜 3 回行う。エパキュア－EC4A による選択的血漿交換を行う。
パリクリマプは敢えて使用をしない。TACER：タクロリム
ス徐放剤、MMF：ミコフェノール酸モフェチル、MPZ：
メチルプレドニゾロン、BSX：パリクリマプ、TPE：治療
的アフェレシス、H2bloc：H2 プロッカー、ST：ST 合剤。

図 6 巣状系球体硬化症に対するアフェレシス療法の比較
新しい血漿分離器によるエパキュア－EC4A では凝固因子はもと
より、アルブミンの喪失が少なく 4% アルブミンの置換液にて 30 〜 50
kDa の活性因子が除去可能である。なお、二重選択血漿交換（血漿成
分分離器：エパフラックス 2A20）では活性因子は除去されにくい。

日本アフェレシス学会雑誌 30 巻 2 号（2011）
4.4 アフェレスシの実際：単純血漿交換
膜型血漿分離器（プラズママキュア®など）を用い、循環血漿量の1から1.5倍の置換を行う。30～50ml/minの血流量で行う。置換液はヒト凍結血漿（FPP）で行う。前述のような有害事象（低カルシウム血症、およびアレルギー反応）の対策および、感染症への懸念が必要である。

4.5 選択的血漿交換
膜型血漿分離器（旭化成社製エバキュア®）を使用する新しい方法である。エバキュアは蛋白質領域の各種血漿成分を均等に透過することなく、大きさ（分子量や形状）に応じた通過率を発現する。中空糸膜孔径が0.088～0.03μmであり、一般的に膜型血漿分離器の1/10程度となっている。エバキュアは膜性能の異なる4つのタイプ（EC-1A～EC-4A）、各々2つの膜面積（1.0，2.0m²）が存在するが、EC-4Aでは中空糸膜孔径は0.03μmで30～50kDaのCFsがほとんど除去できるが、それ以上のIgGや、フィブリノゲンなどの凝固因子は除去される。さらにアルブミンの濁係係数も低く、アルブミン喪失も少なく置換液は4%のアルブミン希釈液、あるいはFFPをその1/4の量の生理食塩水で希釈したものを使っている23。置換液量は40～50ml/kgを目安に行っている。透過中はアルブミン置換液で行っており、施行中は後回しの有害事象はほとんどない（図6）。

5. 結 語
以上腎移植領域におけるアフェレスシの役割を、ABO不適合腎移植、抗ドナーHLA抗体陽性腎移植、果状係末体硬化症に対する腎移植を中心に概説した。近年の免疫抑制剤の発見、発展はめざましいものがある。それに相まって、有害物質を除去するという治療的アフェレスシは切っても切れない関係にある。より良い移植成績の向上のためには、アフェレスシのより深い理解、応用が必要である。

文 献
2) 日本臨床移植学会, 日本移植学会: 臨床移植臨床登載集 報告(2010)-1 2009年実施症例の集計報告. 移植 45; 237-242, 2010
3) 宮田一成: 抗ドナー抗体を有する腎移植、腎移植のすべて、高橋公太編、メディカルビュー社, 東京, 2009, 235-236
7) 清水 勝: ABO式血漿型とLewis式血漿型. ABO血漿型不適合腎移植、高橋公太編、日本移植学会、東京, 1991, 1-8
9) 原田 浩, 三浦正義, 岡 勲盛, 他: 腎移植におけるリツキシマブの使用経験. 今日の移植 19: 463-467, 2006
12) 藤原和夫: 生体腎移植における ABO 血液型一致、不一致、不適合、腎移植のすべて、高橋公太編、メディカルビュー社, 東京, 2009, 223-227
13) 信楽園病院腎センター編: その他の血液浄化療法——血液交換療法、血漿交換療法時の副作用と対策、透析療法マニュアル（改定第5版）、日本メディカルセンター、東京, 1999, 411-413
14) 荒川哲次, 大阪徳: 体外循環法の基礎、置換法、アフェレスシマニュアル 改定第3版, 日本アフェレス学会編, 学研メディカル秀和社, 東京, 2010, 178-183
15) 君川正昭, 江口 圭, 島根三千男, 寺原 慎: 二重灌流血漿交換療法（DFPP）における透析置換療法・置換液アルブミン濃度. 透析会議 34: 1227-1232, 2001
16) 西 健一: 抗体除去療法、腎移植のすべて、高橋公太編、メディカルビュー社, 東京, 2009, 80-81
17) 渡井至彦, 三浦正義, 森田 栄, 他: 腎移植と血液浄化療法, 医学の門 46:13-17, 2006
24) 岩見大基, 原田 浩, 三浦正義, 他: 抗ドナーHLA抗体
日本アフェレシス学会雑誌 30 巻 2 号 (2011)