P38. 防府市と山口市で発生した土石流の性状と発生メカニズム

Characteristics and Generating Mechanism of Debris Flows in Hofu and Yamaguchi Cities, Yamaguchi Prefecture

○大川侑里（山口大学）、金折裕司（山口大学）、今岡照喜（山口大学）

Yuri Okawa, Yuji Kanaori, Teruyoshi Imaoka

1. はじめに
花崗岩の分布地域では、豪雨に伴って崩壊や土石流が発生して、深刻な被害を出している。主なものとして、1972年愛知県中条村、1999年広島市、2003年福岡県飯塚市等があげられる。

1972年愛知県中条村の災害では、岩相の違いによる崩壊発生密度の差が定量的に検討されている[1]。1999年広島市では、石崎21によって花崗岩中のマイクロシーティングと崩壊の関係が示された。2003年福岡県飯塚市における土砂災害においては、花崗岩類の分類と崩壊形態の関係が明らかにされた[2]。

2009年7月21日には、防府市と山口市に分布する地山を構成する花崗岩体において、大規模な土石流が多発した。この地域の南部にあたる防府市北部では、1993年8月2日にも土石流が発生し、被害が出ている[3]。

本研究では、地域防災に関する基礎資料を得るために、2009年に防府市と山口市で発生した土石流の分布と花崗岩の岩相および地形との関係を明らかにし、花崗岩地域における土石流発生のメカニズムを考察する。

2. 土石流分布
図-1に、防府市北部と山口市南部における土石流の分布を示す。今回の土石流は、この地域を流れる大部分の小河川と溪流で発生しており、源頭部は524か所にのぼる。このうち現在地検査によって228か所（図-1の黒色の土石流）を確認した。1つの土石流は数多く源頭部を有し、同級小规模に分類される。これららのうち、最大の土石流は創川で発生しており、その一部の土石流は129か所の源頭部を持ち、流下した距離は約4.5kmに及ぶ。
一方、1993年の土石流は小規模なものが数多く、流下した距離は主として500m以下であり、最大でも約1kmであった。この時の一源頭部は141か所におよんでいる。

3. 花崗岩と土石流の分布
3.1 花崗岩の岩相と粒径
土石流が多発した地域は、白亜紀広島花崗岩に属する花崗岩体が分布する[4]。

この地域は主として粗粒花崗岩・中粒花崗岩・細粒花崗岩、その南部部に花崗岩緑岩、周防変成岩が分布し、これらに石英斑岩・珪長岩・ひん岩などの岩脈が貫入している（図-1）。地域構造的には、中粒花崗岩の上位にほぼ水平に粗粒花崗岩が分布し、それらを花崗岩緑岩が貫き、最後に細粒花崗岩が貫入している。地域構造の標高の低い地域には、多量の旧土石堆積物が分布する。

図-1 2009年および1993年に山口市と防府市で発生した土石流の分布

写真-1 花崗岩及び花崗岩緑岩のスラブ写真
(a) 粗粒花崗岩 (b) 中粒花崗岩 (c) 細粒花崗岩 (d) 花崗岩緑岩

---263---
写真11には、調査地域で採取した花崗岩類の試料のスラブ写真である。粗粒花崗岩は主として粒径3～5mmであり、1～15mmと広い粒子を持つことで特徴付けられる（写真1a）。中粒花崗岩の粒子径は1～2mmである（写真1b）。細粒花崗岩は粒径が1mm以下であり、主として0.25～0.50mmである（写真1c）。花崗岩は、花崗岩よりも有り数物を多く含むことで特徴付けられる（写真1d）。

3.2花崗岩の岩相と源頭部
土石流の源頭部は524か所にのぼり、その後748か所が花崗岩地域に源頭部を持ち、全体の9割以上を支っている。

図1に、点格子からそれぞれの地質の分布面積を求め、単位面積当たりの源頭部の数を示した。粗粒花崗岩では、単位面積あたりの源頭部数は5.5個/km²。その他の中粒花崗岩や花崗岩などは3.5個/km²。ここでは0.5個/km²であった。したがって、花崗岩のなかでも、特に粗粒花崗岩で土石流発生頻度が高いことがわかる。

4.地形
1km×1kmメッシュの起伏量分布図から、花崗岩地域での50mmごとの起伏量における源頭部の数を計測し、その結果を図3に示す。2009年の土石流では、201-250mに最大のピークがあり、351-400mにピークが存在する。1993年の土石流では、201-250mに最大のピークがあり、101-150mにピークが認められる。このことから、起伏量が201-250mの区域において、斜面崩壊や土石流が発生していることがわかる。

6.まとめ
2009年と1993年に発生した土石流の性状と発生メカニズムを以下にまとめる。
(1) 2009年防府市の土石流の源頭部は、524か所中478か所が防府花崗岩体に位置している。花崗岩の岩相の違いによる発生箇所数の違いが顕著であり、粗粒花崗岩地域に最も多く分布し、次に中粒花崗岩地域であり、細粒花崗岩地域にはほとんど源頭部がない。
(2) 1993年の土石流では141か所中140か所が中粒～粗粒花崗岩地域であった。これからのことから、土石流発生の要因として粗粒花崗岩が関与していたことが推察される。
(3) 花崗岩地域での起伏量と源頭部の関係に基づくと、2009年と1993年の両年とともに、起伏量が201-250mの区域に源頭部の発生頻度が高いことがわかった。
(4) チジギラ母を示す中粒花崗岩～粗粒花崗岩地域、マサ状風化花崗岩と風化花崗岩の境界でパイピングが発生して表層崩壊が発生した。

文献
1) 户邉勇人・千木良積弘・土佐田英明(2007)：愛知県小原町の花崗岩地域における崩壊発生密度の岩相間での比較、応用地質、48巻、2号、66-79。
3) 正野英憲・森崎哲明(2005)：花崗岩地域における土石流発生形態・地形スケールと土砂災害発生例について、日本応用地質学会九州支部会報、26、2-9。
4) 山口県土木建築事務所(編)(1995)：崩壊；山が崩れた！～防府市土砂災害～、23p。
5) 土石流発生模様(2009)：山口県防府市で発生した山体崩壊、土砂流出位置図について、1枚。
6) 山本慎一・今岡幸義・金丸隆夫・田村盛光(2006)：山口県中南部、長崎観光地花崗岩山ブロッサムの岩石学的特徴と変形様式、地域科学、60巻、5号、415-429。