南半球極渦周辺の平均鉛直運動

* 宮崎 和幸1, 岩崎 俊樹2
(1 地球環境フロンティア研究センター, 2 東北大院)

1. はじめに

成層圏極渦周辺の鉛直運動は、大気微増成分分布や大気の熱的構造に重要な役割を果たす。しかし、その運動は非常にゆっくりとしており、観測から直接知ることは難しい。TEM 残差循環などから平均的な鉛直流速を見積もることはできるが、解析手法の制限が詳細な理解を妨げている可能性がある。

厳密なラグランジェ運動速度は、一般化したラグランジェ平均（GLM）系により定義される。しかし、実データ解析への応用は容易ではない。TEM 系では、波の非定常、非線形、非保存性に起因して、その残差循環は GLM 循環と相違し、両者の差は非断熱加熱に対するストークス補正に比例する。一方、鉛直座標に温度を用いた解析では、保存的な波による温度面上の帯状非対称循環が半球平圏循環をラグランジェ運動の不一致を招く。また、トレーサー等濃度面の時間変動跡から大気の鉛直運動速度を推定する手法もあるが（トレーサ解析と呼ぶ）、複雑な大気構造に関連して、極渦の二次循環解析については解析結果に注意を要する。

本研究では、各解析手法の特徴に留意し、南半球極渦二次循環のラグランジェ的な特徴を、GCM および観測解析データを用いた解析から議論する。

2. 結果と考察

トレーサ解析から推定される鉛直流速を地理緯度と等価緯度で比較し、温度面上での南北往復運動の存在を検証した。南半球極渦周辺では広域間の違いは非常に小さく、温度座標に基づく平均平圏循環は地理緯度においてもラグランジェ循環を精度良く解析する。

GCM の南北風を用いた力学的解析手法は、45S-55S の極渦外側において強い下降流を示し（図 3）、非断熱加熱を用いた熱力学的解析と整合する。一方、EP-flux を用いた運動量収支解析から求めた鉛直流には著しい解析誤差が含まれる。トレーサ解析による下降流算出は、極渦の境界から中心にかけては力学的手法と一致するが、極渦外側では活発な水平混合の存在により下降流を大幅に過小評価する（図 2）。水平混合の影響を考慮した場合、トレーサ解析においても、強い下降流は極渦の内部よりも外側に存在する。

この極渦周辺の下降流は、断熱昇温により温度構造を変化させ、温度風バランスを介して極夜ジェットに影響する。特に、極渦形成の初期の影響を考慮した鉛直外側の強い下降流が風速に重要な役割を果たしていることが分かった。

一方、観測解析データを用いた解析では、同化過程が循環場に深刻なノイズを加えるため、極渦周辺の鉛直流速を捉えることは困難である（図 3）。また、従来の TEM 残差循環と等温面での質量重荷平均に基づく解析の比較から、残差循環は極渦外側（内部）では下降流を過大（過小）評価することが分かった。この差異は TEM の準地衡風近似に起因すると考えられる。

図 1 南北風から計算した平均鉛直流速（黒線：0.1 mm s⁻¹ 隔間（濃い色が下限域））と東北平均東西風（白線：10 m s⁻¹ 隔間）の平均値。

図 2 力学解析およびトレーサ解析から算出した 63hPa における平均鉛直流速（mm s⁻¹）。6-8 月の平均値。

図 3 各種 GCM および観測解析データによる平均鉛直流速（mm s⁻¹）の 63hPa における分布。6-8 月の平均値。