論文 PC 複合トラス桁の交番載荷実験

吉川 卓*1·野吕 直以*2·大塚 久哲*3

要旨:本研究では、ラーメン構造に適用可能な PC 複合トラス橋の格点構造の開発を目的と して、模型供試体による正負交番載荷実験を実施した。研究対象とした格点構造は、過去の 研究において一方向荷重に対する性能の確認は行われているが、地震時を対象とした交番荷 重下での性能の確認は行っておらず、ラーメン構造に適用するためには正負交番軸力下での 性能確認が不可欠となる。実験の結果、本格点構造は地震時に作用する正負交番軸力に対し て、十分な耐力を有していることを確認した。また、格点部の非線形挙動および、格点部周 辺コンクリートのひび割れ性状から、ラーメン構造へ適用可能であることを確認した。 キーワード: PC 複合トラス、交番載荷実験、格点構造、耐震性能、ラーメン構造

1. はじめに

PC 複合トラス橋は、通常の PC 箱桁橋におけ るコンクリートウエブ部を鋼製のトラス材に置 き換えた構造で、コンクリート製の上下床版と 鋼トラス材から断面が構成される構造である。 本構造は、上部構造の軽量化、ウエブ施工の省 力化、下部構造や基礎構造の縮小等によりコス ト縮減を図った構造であり、国内では数橋の施 工実績^{1),2),3),4)}がある。現在,国内で施工された PC 複合トラス橋は、単純桁構造や連続桁構造、 および橋脚高さが高いラーメン構造が採用され ているが、いずれも上部構造への地震時作用断 面力の影響が小さな構造形式といえる。一方、 コスト縮減の観点から、橋脚高さが 30m 程度の 比較的低い場合においても、上部構造と橋脚を 剛結とするラーメン構造を採用することも考え られるが、その場合、地震動の影響によってコ ンクリート床版と鋼トラス材が接合する格点部 に大きな正負交番軸力が作用する。

研究で対象とした格点構造は,実物大供試体 を用いた載荷実験によって耐荷性状⁵⁾や疲労耐 久性⁶に関する性能の照査を行い,実橋では島根 県に建設された志津見大橋の格点構造として採 用されたものである。本格点構造は、過去の実 験で一方向荷重に対する検証は行っているが、 地震時に作用する交番荷重に対する検証は行わ れていない。PC 複合トラス橋をラーメン構造と するためには、格点構造の地震荷重に対する性 能確認が不可欠である。このような背景から本 研究では、ラーメン構造に適用可能な格点構造 の開発を目指し、地震時を想定した正負交番軸 力下での格点構造の性能を確認すること目的と して、模型供試体による正負交番載荷実験を行 った。

2. 対象橋梁

検討の対象とした橋梁は、図-1に示す中央径 間 90m として試設計を行った PC3 径間連続複合 トラスラーメン橋である。本橋のレベル 2 地震 動を対象とした非線形動的解析の結果、図に示 した側径間位置では、上下床版および鍋トラス 材ともに地震時の作用軸力が正負交番すること が確認された。また、この部位は、地震時断面 力が設計計算における終局荷重断面力を上回る ことから、本研究では、図に示した位置を実験 供試体の対象部位とした。

*1 オリエンタル建設(株) 技術部 工修 (正会員)
*2 新日鉄エンジニアリング(株) 海洋・エネルギー事業部 工修
*3 九州大学大学院 工学研究院建設デザイン部門教授 工博 (正会員)

3. 格点構造

研究で対象とした格点構造は、図-2に示すよ うに、圧縮材端部を雌格点、引張材端部を雄格 点とし、格点部に作用するせん断力を引張材端 部に溶接したリングシェアキーと称するせん断 キーを介して伝達させる構造である。格点部の 荷重伝達構造を図-3に示す。圧縮材に作用する 圧縮力は、鋼管内側に溶接されたリブを介し、 鋼管内部に充填されたコンクリートに伝達され る。次に、充填コンクリートからリングシェア キーに荷重が伝達し、フランジプレートを介し 引張材に引張力として伝達される。

実験に使用した格点部は、地震時に作用する 断面力に対して、図-4に示す補強を行っている。 概要は以下の通りである。

(1) 格点部に作用する正負交番軸力に対応する ために,引張材となる雄格点内側にも溶接リブ を配置し,鋼トラス材内部にコンクリートを充 填することで圧縮力を伝達可能な構造とした。

(2) コンクリート床版が軸引張状態となる場合 に、鋼トラス材とコンクリート界面の肌すきや、 ひび割れの集中が予想されることから、鋼トラ ス材に機械継ぎ手を溶接し、軸方向鉄筋と連続 化した。また、溶接した機械継ぎ手から作用す る引張力を隣の格点へ伝達すること、およびフ ランジプレート上縁が開くことによる格点部上

図-2 格点構造

図-5 実験供試体

4. 実験供試体

図-5に実験に用いた供試体の概要を示す。供 試体は、想定橋梁の約 1/4.25 スケールとなる単 純桁モデルとした。なお、載荷装置の制約から 張出し床版を省略したモデルとしている。上・ 下床版には、それぞれ PC 鋼より線 1S12.7 を 4 本配置し、想定橋梁における対象部位での静荷 重時のコンクリート縁応力度とほぼ同等となる、 2.0N/mm²のプレストレスを導入した。軸方向鉄 筋は、床版部に D10 を 125mm 間隔, 格点部周辺 に D10 を 11 本配置した。また、図には、雄格点 および雌格点の配置を示している。雄・雌格点 は、正載荷時(鉛直下向き載荷)に全ての格点 が図-3 に示した方向の軸力を受けるように配 置している。すなわち,負載荷時(鉛直上向き 載荷)には全ての格点が図-3と逆方向の軸力を 受けることとなる。

荷重の載荷は,油圧ジャッキを使用して行っ た。載荷点は,上床版支間中央の格点位置とし, 正載荷および負載荷ともに同一の点に荷重を作 用させた。供試体の支持条件は,桁両端部の上 下方向を拘束し,水平・回転を可動とした。荷 重の載荷方法は,ひび割れ,鉄筋降伏等のイベ ントが確認された時点で荷重を除荷し,その後, 荷重を反転させる繰り返し載荷を行った。なお, 載荷装置の能力制限から,約±1,300kNの荷重を 表-1 コンクリートの材料試験値

設計基準 強度 (N/mm ²)	位置	実 験 時 材齢	圧縮強度 (N/mm ²)	引張強度 (N/mm ²)	ヤング係数 (N/mm ²)
40	上床版	16 日	48.7	4.24	2.95×10 ⁴
	下床版	28日	48.2	3.37	2.89×10 ⁴

表-2 使用鋼材の材料試験値

部材	規格	寸法	降伏強度 (N/mm ²)	引張強度 (N/mm ²)
鉄筋	SD295A	D10	367	514
PC 鋼より線	SWPR7B	1S12.7	1884	1996
鋼トラス材	STK490	φ139.8×4.5	493	575
リングシェアキー	STPG370	\$ 60.5×5.5	510	535
フランジプレート	SM490	t=9mm	390	555

上限とした。

使用したコンクリートの実験時材齢における 材料試験値を表-1に、使用した鋼材の材料試験 値を表-2に示す。使用した各材料は、可能な限 り想定橋梁と縮尺が等しい材料を選定したが、 例えば、鉄筋のかぶり(15mmに設定)について は製作上の制約から縮尺は一致していない。ま た、実橋の設計において、地震後に補修するこ とが困難な格点部の耐力は、鋼トラス材の耐力 以上に設定する必要があるが、実験では、床版 および格点部の破壊過程に着目することから、 鋼トラス材の耐力を格点部の耐力以上となるよ う部材寸法を決定した。

5. 載荷実験結果

5.1 全体挙動

表-3に、実験時のイベント発生荷重とイベント概要を示す。実験では、正載荷、負載荷とも

に、図-6に示す設計荷重までは弾性状態を保ち、 設計荷重を超えた付近で床版の引張縁に曲げひ び割れが発生した。その後、正載荷では地震時 荷重、負載荷では終局荷重を超えた時点で、格 点部付近に写真-1に示す斜めひび割れが発生 した。ここで、供試体の設計、終局および地震 時荷重を想定橋梁の設計計算における各荷重作 用時の鋼トラス材軸力に相当する軸力が供試体 に作用する載荷荷重と定義した。さらに載荷を 続けると、引張縁鉄筋の降伏、PC 鋼材の弾性限 界に達し、正載荷時には格点部(リングシェア キー)の降伏に至った。なお、使用した載荷装 置の能力の範囲では、コンクリートの終局ひず み(圧縮ひずみ 3,500 μ)には達していない。

図-6に、実験より得られた荷重変位曲線を示 す。縦軸は、載荷荷重であり、下向きに正載荷 時、上向に負載荷時の荷重を示し、死荷重作用 時を原点としている。横軸は、支間中央点の鉛 直変位を示している。また、図中には、格点LK2 およびUK3に作用する圧縮軸力が、供試体の設 計荷重、終局荷重および地震時荷重となる載荷 荷重を示している。さらに、ファイバーモデル を用いた非線形解析により算出した荷重変位曲 線、および各イベントの発生点を付記している。 ファイバーの非線形特性は、道路橋示方書Ⅲ編 のモデルを使用し、表-1、2に示した材料特性 値を考慮した。ただし、コンクリートの引張強 度を考慮し、部材のせん断非線形は無視した。

荷重変位曲線より,ファイバーモデルを用い た解析値は,実験で得られた骨格曲線を精度良 く評価していることがわかる。また,解析での イベント発生荷重についても実験値と良く一致 していることから,ファイバー要素を用いた非 線形解析によって,PC 複合トラス橋の非線形挙 動を精度良く評価できることが確認できた。ま た,この結果から,供試体の挙動にせん断変形 の影響は顕著に現われていないものと考えられ る。前述のように,終局荷重以降,格点部付近 のコンクリート表面には,斜めひび割れが生じ ているが,斜めひび割れの発生前後で急激な剛

表一3 戜何試験イベント	·梉略	
----------------	-----	--

載荷荷重	供試体状況
+ 495kN	支間中央付近下床版下縁に曲げひび割れ発生
+900kN	格点LK2(LK6)に斜めひび割れ発生(目視)
+936kN	支間中央付近下床版鉄筋降伏
+1175kN	支間中央付近下床版 PC 鋼材弹性限界
+1211kN	格点LK2リングシェアキー降伏
600kN	支間中央付近上床版上縁に曲げひび割れ発生
-850kN	格点 UK3(UK6)に斜めひび割れ発生(目視)
-1148kN	支間中央付近上床版鉄筋降伏
-1256kN	支間中央付近上床版 PC 鋼材弹性限界

写真-1 格点部のひび割れ状況(LK6)

性低下は生じず,また,斜めひび割れ発生後も 荷重を維持し続けている。また,正載荷時には, 格点 LK2 のリングシェアキーが降伏に至ってい るが,その後も荷重が低下せず耐力を維持して いることから,本格点構造は,斜めひび割れの 発生やリングシェアキーが降伏に至る場合でも 脆性的な破壊とはならないことが確認できた。

5.2 リングシェアキーの挙動

図-7に、リングシェアキーのフランジプレー ト間に貼付した 3 軸ひずみゲージの応答値より 算出した主ひずみを示す。図中縦軸は、鋼トラ ス材に作用する軸力の値を示しており、引張軸 力を正としている。

格点 LK2 は、正載荷時に終局荷重付近でひず

みの勾配の変化点が現れ、その後リングシェア キー降伏ひずみまで一定の勾配を保っている。 ひずみの勾配変化点から、斜めひび割れ発生ま での間は、せん断力の分担が格点周辺のコンク リートからリングシェアキーへ移行する区間で あると考えられる。リングシェアキーが降伏ひ ずみに達した後も、鋼トラス材に作用する軸力 が低下せず一定の値を保持している。また、作 用軸力の方向が逆転する負載荷を受けた場合で も、地震時荷重を超える程度まで弾性状態を保 っている。

格点 UK3 の場合も, LK2 とほぼ同様の履歴曲 線を示している。UK3 は,負載荷時に図-2 と 逆向きの荷重が作用し,終局荷重付近でコンク リートに斜めひび割れが生じるが,斜めひび割 れ発生後も鋼トラス材の軸力は増加し続けてい る。また,UK3 においても,正負の荷重に対し て地震時荷重を超える程度までの耐力を有して いる。以上の結果から,本格点構造はレベル 2 地震時に作用する正負交番軸力に対して,十分 な耐力を有しているものと考えられる。

5.3 フランジプレートの挙動

図-8, 図-9に, 格点 LK2 のフランジプレー トに貼付した1軸ひずみゲージの位置とその計 測値を示す。なお, A~C 点, D~F 点は, それ ぞれ, 雄格点, 雌格点のひずみゲージである。 図中縦軸は, 鋼トラス材に作用する軸力の値を 示しており, 引張軸力を正としている。

格点 LK2 は、本供試体で最も大きなトラス材 軸力が作用する格点である。フランジプレート 内で最も大きなひずみが発生したのは、リング シェアキー近傍に位置する B 点, E 点であるが、 正負交番荷重が作用しても、それらの発生ひず みは鋼材降伏ひずみ(1,950µ)に達していない。 しかし、両箇所の荷重ひずみ曲線ともに、トラ ス材軸力が 180kN 程度(試験機載荷荷重+800kN 程度)でひずみの勾配の変化点が現れている。 前述の表-3 に記述する載荷試験イベント概略 の格点 LK2 の斜めひび割れ発生時にほぼ近似す る荷重であることから、格点近傍のコンクリー

-1283-

トの一部でひび割れ等が発生し、格点に作用す る断面力をフランジプレートが負担し始めたも のと考えられる。フランジプレートは、格点に 作用する断面力の全てを負担できる断面として 設計するため、ひずみ勾配の変化点は設計にお いて特に問題となるものではない。

なお、A 点、D 点の発生ひずみ、C 点、F 点の 発生ひずみはそれぞれ 400 µ, 350 µ 程度と小さ く、交番荷重が作用する格点でも、格点部のフ ランジプレートを設計する時に特別な配慮は必 要がないと思われる。

5.4 ひび割れ幅

図-10に、載荷荷重と格点部の斜めひび割れ 幅の関係を示す。LK2 の格点は降伏しており, UK3 は降伏していないが、最大ひび割れ幅は 0.25~0.30mm 程度と大きな差は生じていない。 除荷時の残留ひび割れ幅に着目すると、LK2 で 0.07mm, UK3 で 0.03mm とリングシェアキーが 降伏した LK2 の残留ひび割れ幅が大きくなって いる。しかし、道路橋示方書V編に記述されて いる、地震後の構造物の耐久性の観点から規定 されている残留ひび割れ幅の限界値である 0.2mm と比較して十分に小さな値となっている。 なお、供試体の鉄筋のかぶりは 15mm であり、 実橋で場所打ち施工を行う場合の鉄筋のかぶり の規定値は 35mm である。鉄筋のかぶりとひび 割れ幅が比例関係にあると考えれば、供試体の 残留ひび割れ幅 0.07mm は、実橋では約 0.16mm に相当し、この場合でも残留ひび割れ幅に対す る限界値である 0.2mm を下回る。これらの結果 から、格点部に発生する斜めひび割れは、地震 後の構造物の耐久性に対して特に有害とはなら ないものと考えられる。

6. まとめ

PC 複合トラス橋のラーメン構造に対応可能な 格点構造の開発を目的として,模型供試体によ る正負交番載荷実験を行った。実験の結果を以 下にまとめる。

(1) ファイバーモデルを用いた非線形解析によ

って、PC 複合トラス橋の非線形挙動を精度 良く評価することができる。

- (2) 格点部コンクリートには、終局荷重を超える まで斜めひび割れは発生しない。また、斜め ひび割れの発生によって桁の剛性が急激に 低下することはなく、斜めひび割れの発生に よって、脆性的な破壊には至らない。
- (3) 対象とした格点構造は、レベル2地震時に相 当する正負交番荷重に対して十分な耐力を 有する。また、斜めひび割れ発生後も十分な 耐力を維持する。
- (4) 格点部に生じる斜めひび割れの残留ひび割れ幅は、0.07mm 程度であり、地震後の修復限界である0.2mmと比較して十分に小さい。以上、本格点構造は、ラーメン構造のPC 複合トラス橋の格点として、地震時に必要とされる +分な性能を有していると考えられる。

参考文献

- 南浩郎、小野武、瀬戸清,尾鍋卓巳:那智勝浦 道路木ノ川高架橋の施工,橋梁と基礎, Vol.38, No.1, pp.13-19, 2004.1
- 2) 石田清,木戸,小山幸寛,大久保秀樹:羽越線 山倉川橋りょうの設計・施工,プレストレスト コンクリート, Vol.46, No.2, pp.56-63, 2004.3
- 青木圭一,能登谷英樹,加藤敏明,高徳裕平, 上平康裕,山口貴志:第二東名高速道路猿田川 橋・巴川橋の設計・施工,橋梁と基礎, Vol.39, No.5, pp5-11, 2005.5
- 藤原浩幸,坂田寛司,桃木洋子,正司明夫,後 小路祥一,野呂直以:志津見大橋の設計・施工, 橋梁と基礎, Vol.39, No.11, pp.5-11, 2005.11
- 5) 二井谷教治,江口信三,関口信雄,野呂直以: 鋼トラスウェブ PC 橋格点部の実験的研究,構造工学論文集,Vol.46A,pp.1509-1516,2000.3
 6) 野呂直以,室井進次,二井谷教治,江口信三:
- 5) 野呂直以,室井進次,二井谷教治,江口信三: 複合トラス橋の格点部の実験的研究,構造工学 論文集, Vol.47A, pp.1485-1490, 2001.3