Plio-Pleistocene Uonuma Group. This straight scarp is most probably of tectonic origin. However, no detailed study has been carried out on this scarp, except for the mapping of the Ishiuchi fault at the southern part of the Muikamachi Basin. The author intends to establish the tectonic origin of this western boundary and evaluate its deformation pattern and slip rate, based on the interpretation of large scale aerial photographs, observation, and surveying of the deformed morphology.

A series of small-scale uplifted fans, which are formed by eastward-flowing branches of the Uono River, are developed along the western margin of the Muikamachi Basin. They are classified into 4 levels: terraces I to III of late Pleistocene age and Alluvial surfaces of Holocene age. Their longitudinal profiles are characterized by backward tilting and convex profile of flexural scarps, indicating that the terraces were deformed by reverse faults. Based on field observation of deformed morphology, the author identified faults along the western margin of the basin and called them the Ishiuchi faults a collectively. Vertical slip rate ranges from 0.8 to 2.0 m/ky after the late Pleistocene. Therefore, the author concludes that the Ishiuchi faults have repeatedly moved at a high slip rate throughout the late Quaternary, and can be defined as seismogenic faults.

Activity study of the Suminoe flexure, a branch of the Uemachi fault system and estimated sea level change during the past 10,000 yrs, in the western Osaka Plain, central Japan [JE]

by Futoshi Nanayama, Yasuhiro Doi, Naoko Kitada, Keiji Takemura and Yuichi Sugiyama

Borehole and seismic-reflection data provide no evidence for recent activity of the Suminoe flexure, a branch of the Uemachi fault system near Osaka since 14,000 14C yBP. Using cores from six boreholes, we studied the sedimentology, paleontology, tephrochronology, and radiocarbon age of late Quaternary deposits on the flexure. We also made an S-wave seismic reflection survey to check the architecture of these deposits. The architecture of these units shows that the average vertical slip rate on the flexure has not exceeded 0.2 m/ky, and that the most recent faulting predates 14,000 14C yBP. The Holocene deposits further shows that relative sea level was about -19m at 8,500 14C yBP, and that it rose rapidly between 8,500 and 6,000 14C yBP.

Faulting history of the Median Tectonic Line active fault system at Tokushima plain in the easternmost part of Shikoku, southwest Japan [JE]

by Michio Morino, Atsumasa Okada, Takashi Nakata, Koji Matsunami, Masayoshi Kusaka, Akihiro Murata, Kiyohide Mizuno, Tadatoshi Nomura, Emi Taninomiyaa, Saori Ikeda and Ikuo Hara

The Median Tectonic Line (MTL) active fault system is one of the most active intraplate faults in Japan. The fault system, more than 300 km long, is a right-lateral strike-slip fault with average slip