Abstract We describe in detail petrographical features and the detrital mode of sandstones from the TIIId Unit (late Triassic), the Takashiroyama and Pompomyama Formations in the Tamba Belt in the Inner Zone of Southwest Japan. The geologic age of the Takashiroyama and Pompomyama Formations is regarded as the same as, or slightly older than, that of the TIIId Unit. Sandstone of the TIIId Unit is richer in quartz and plagioclase, and poorer in rock fragments than that of the TIIc Unit (early Jurassic). In contrast, sandstones from the Takashiroyama and Pompomyama Formations are rich in potash feldspar and quartz, but poor in rock fragments, with good sorting and high maturity. We have termed them feldspathic sandstones. These sandstones are very similar in composition to those of the late Triassic Nabae Group in the Maizuru Belt beyond the Ultra-Tamba Zone, and both of them display features of shallower facies compared with those of the TIIId Unit.

Petrographical and sedimentological data reveal that these sandstones changed from feldspathic and shallower facies in the late Triassic time to lithic and deeper facies in the early Jurassic time. This change may correspond to activation of tectonic movement in the source area and depositional basin of the Tamba Belt at that time.

Key words: Tamba Belt, sandstone, petrography, TIIId Unit, Takashiroyama Formation, Pompomyama Formation, sedimentary environment, provenance

このように、II型層群の最も古い陸源砂屑岩層は三畳紀新世と考えられている(Fig. 1)。これらの三畳紀新世とされる砂岩のモード組成を比較検討し、丹波帯との周辺の地帯における三畳紀新世からジュラ紀古世前期の後背地の変化等について考察をおこなった。

謝辞 本研究を進めるにあたり、京都教育大学の井本伸広教授に御討論いただいた。同志社香里中・高等学校の本田輝政氏からは出灰地域の地質について御教授いただき、丹波地帯研究グループの諸君からはポンポン山周辺の地質について御教授・御討論いただいた。また、山口大学の君波和雄助教授には本論集に発表の機会を与えていただいた。以上の方々に厚くお礼申し上げる。

丹波帯の構造的最上部の地質

坂口ほか(1970)は、京都市西部の丹波層群を下位より田能層、出灰層、高槻層に区分した。多能層は、産出化石と岩相より丹波層群のユニットTIIfに対比される、本田・丹波地帯研究グループ(1991)は、出灰層下部の砕屑岩層からジュラ紀古世および三畳紀新世の放散虫化石を抽出し、これを2つのユニットに分割した。そして、これらをそれぞれウニットTIIdとユニットTIIfに対比した。ポンポン山層(出灰層上部)は灰白色長石質アレナイトの砂岩を主体とし、ポンポン山周辺に分布する(Fig. 2)、構造的最上位の高槻層は超丹波帯の構成岩層である

Fig. 1. Lithology and correlation of the Mesozoic–Paleozoic formations in the Maizuru Belt, the Ultra–Tamba Zone and the Tamba Belt. SSY: Sasayama Group, TKS: Takashiyama Formation, PPY: Pomponyama Formation, HKM: Hikami Formation, OI: Oi Formation, NBE: Nabae Group, YKN: Yakuno Group, MZR: Maizuru Group (after Kusunoki & Musashino, 1990; Ishiga, 1990; Honda & Tamba Belt Research Group, 1991; Doshisha–kohri High School Chigakukenkyukai, 1979).
丹波帯の三疊系下部ジュラ系の砂岩組成とその意義

丹波帯西部の兵庫県多紀郡篠山町にはゾロ歪みによる堆積面の傾斜崩れが見られる。この結果、丹波帯のII型地層群のユニットTIIcおよび三疊系を含むユニットTIIId（楠・高城山団体研究グループ, 1991）が砂岩層（石賀ほか, 1987; 戸倉・高城山団体研究グループ, 1987）が分布する。このように丹波帯の構造的最上部の地層は三疊紀新世であり、その上位には舞鶴帯（2）や超丹波帯の地層が分布する（Fig. 1 & 2）。

上記の地層のうち、構造的に丹波層群の三疊系碎屑岩層（ユニットTIIId）と超丹波帯相当層の間に位置する丹波層群の下部のポーポン山層と西部の高城山層とは、よく似た岩相を示している。また、両層の砂岩は、舞鶴帯の上部三疊系難波江層群の砂岩の岩相に類似する。両層は、その岩質や堆積相が後述するように丹波帯のII型地層群のそれと異なっているが、超丹波帯の圧碎された砂岩の構造的下位に位置することから、丹波帯を構成する上部三疊系である可能性が高い。以下では両層を丹波帯の上部三疊系としてあつかう。

検討した砂岩試料

モード組成を検討した砂岩試料は、次のようである。

（1）楠・武蔵野(1990)によりユニットTIIIdとされた京都府北桑田郡京北町で周山シンフォーメル内の魚ヶ瀬砂岩層、つまり三疊紀新世モノチス化石を産出する砂岩（Fig. 2, Loc. A）と三疊紀新世酸性凝灰岩に接する砂岩（Fig. 2, Loc. B）。

（2）武蔵野ほか(1992)による京都府船井郡部町船板北西の中山間の酸性凝灰岩周辺の砂岩（Fig. 2, Loc. C）。

（3）本田・丹波帯地質研究グループ(1991)によってユニットTIIIdとされた大阪府高槻市本町吉生の三疊紀新世ハロピア化石化を含む石灰岩付近の砂岩

Fig. 2. Geologic map of the southwestern part of the Tamba Belt showing localities of the sandstones described in this paper (■: described, ○: examined by microscope). a: chert, b: greenstone, c: sandstone of the Takashiroyama Formation and Pomponyama Formation, d: sandstone, e: shale with sandstone and chert, f: Mesozoic acidic volcanics, g: granitic intrusives, h: boundary of units and fault (compiled from Imoto et al., 1989, 1991; Kusunoki & Takashiroyama Reserch Group,1991; Honda & Tamba Belt Reserch Group, 1991; Doshisha–kohri High School Chigakukyenkyukai, 1979).
Table 1. Average modal compositions of sandstones.

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>QUARTZ Mono. Poly.</th>
<th>FELDSPAR K-f Pl.</th>
<th>LITHIC FRAGMENT Met. lg. Sed.</th>
<th>HEAVY MINERAL Others</th>
<th>MATRIX & CEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Kurio</td>
<td>14.0 20.6</td>
<td>10.5 12.1</td>
<td>1.3 17.4 9.4</td>
<td>0.1 0.3</td>
<td>14.3</td>
</tr>
<tr>
<td>B Uogafuchi</td>
<td>13.1 17.0</td>
<td>8.9 10.7</td>
<td>1.6 16.6 7.3</td>
<td>0.5 0.8</td>
<td>22.7</td>
</tr>
<tr>
<td>C Nakayama Pass</td>
<td>15.1 13.8</td>
<td>11.9 14.1</td>
<td>1.6 24.0 6.5</td>
<td>0.2 0.9</td>
<td>11.8</td>
</tr>
<tr>
<td>D Izurita</td>
<td>11.6 12.0</td>
<td>8.9 14.0</td>
<td>1.2 22.7 9.7</td>
<td>0.8 0.7</td>
<td>18.7</td>
</tr>
<tr>
<td>E～G*</td>
<td>26.5 24.7</td>
<td>19.8 6.6</td>
<td>0.5 9.5 3.9</td>
<td>0.7 0.7</td>
<td>7.4</td>
</tr>
<tr>
<td>H Pomponyma</td>
<td>21.7 17.4</td>
<td>20.3 10.5</td>
<td>1.0 13.6 6.1</td>
<td>0.7 0.7</td>
<td>8.1</td>
</tr>
<tr>
<td>I Syakadake</td>
<td>20.1 21.6</td>
<td>19.0 9.8</td>
<td>0.8 13.9 3.7</td>
<td>0.8 0.2</td>
<td>10.0</td>
</tr>
<tr>
<td>TIIld type*</td>
<td>13.0 20.3</td>
<td>11.3 12.1</td>
<td>1.8 18.6 10.6</td>
<td>0.2 0.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Average of A～C</td>
<td>14.4 14.2</td>
<td>9.4 13.1</td>
<td>1.7 18.3 7.6</td>
<td>0.4 0.6</td>
<td>20.4</td>
</tr>
<tr>
<td>Takashiro, F. (E～G)*</td>
<td>26.5 24.7</td>
<td>19.8 6.6</td>
<td>0.5 9.5 3.9</td>
<td>0.7 0.7</td>
<td>7.4</td>
</tr>
<tr>
<td>Pomponyma F. (H.I)</td>
<td>21.0 19.1</td>
<td>19.8 10.2</td>
<td>0.9 13.7 5.2</td>
<td>0.7 0.5</td>
<td>8.7</td>
</tr>
<tr>
<td>TIIld Type (A,B,C,D & TIIld)</td>
<td>13.5 16.0</td>
<td>10.8 13.1</td>
<td>1.6 20.9 8.7</td>
<td>0.3 0.8</td>
<td>14.3</td>
</tr>
<tr>
<td>Eq. of Nabae G. (N2)</td>
<td>3.1 4.8</td>
<td>2.7 2.2</td>
<td>0.7 3.4 3.5</td>
<td>0.3 0.6</td>
<td>5.1</td>
</tr>
<tr>
<td>(E,F,G,H,I) STD</td>
<td>3.7 4.1</td>
<td>2.4 2.3</td>
<td>0.4 2.8 1.4</td>
<td>0.5 0.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

(4)大阪府高槻市新馬郡の茶山・未帰りに分布するポパン気の砂岩(Fig. 2, Loc. H～I).
(5)兵庫県多紀郡篠山町の篠山盆地周辺の新成層(Fig. 2, Loc. E～F, G).
なお、モード比率は測定していないが、薄片により砂岩のタイプを検討した地点をFig. 2に●(ユニットTIIldタイプ)と○(ユニットTIIlcタイプ)で示した。

砂岩のモード組成

砂岩試料のモード組成はポイントカウント法によって測定した。測定は、楠・武蔵野(1989)の方法による。各地層もしくは地点(Fig. 2)についての砂岩モード組成(Table 1)の特徴は、次のとおりである。

魚ヶ淵砂岩層(Loc. A)：基質が約12%のアレナイットであり、石英を約33%，長石を約23%含む。石英は単結晶石英と比べて多結晶石英が多い。斜長石とカリ長石の量はほぼ等しい。岩片は約33%含まれ、3分の1が堆積岩片である。火成岩片では中性～酸性火成岩が多い。堆積岩片ではチャート石や細粒砂岩、泥岩が多い。また、砂岩片には基質部分に緑黒片を多量に含んだものが僅かに認められる。この砂岩片は、円盤された研磨粒子の間に緑黒片が認められる。この変質が進んでおり変成岩片かどうかは判別不能である。変成岩片の石英、カリ長石、電気石、緑黒片、コンゴイサイトを主に、サクゼ石を少量とされる。

魚ヶ淵砂岩層(Loc. B)：基質を22.7%含むウッケである。石英は36.9%含み、うち78%が多結晶石英である。長石は19.6%含み、斜長石がや多い。火成岩片は上記のLoc. Aと同じく中性～酸性火成岩片が約17%と多い。堆積岩片は細粒砂岩が多く、7.4%含まれる。また、変成岩片は緑黒片、電気石、サクゼ石を含む。

上記の2地点の魚ヶ淵砂岩層の砂岩は、基質を除いた変成岩組成比がほぼ同じであることを、同質であるといえる(Fig. 3a)。

中山崎の砂岩(Loc. C)：基質が11.8%アレナイットである。石英を28.9%含み、単結晶石英が多結晶石英よりや多い。長石は約26%含まれる。斜長石は14.1%でやや多く、カリ長石は11.9%である。岩片は32.1%含まれ、斜長石火成岩片が約24%、堆積岩片が6.5%である。火成岩片のうち、中性～酸性
Fig. 3. Modal ratio patterns of sandstones. (a) and (b): sandstones from TIIId Unit, (c) and (d): sandstones from the Takashiroyama and Pompomymama Formations. Q: total quartz, Qm: monocrystalline quartz, F: feldspar, K: potash feldspar, P: plagioclase, L: lithic fragments, Ls: sedimentary rock fragments, Lv: Igneous rock fragments.
火山岩片が多く、塩基性の火山岩片も認められる。堆積岩片では、チャートや砂質泥岩が多い。Fig. 3(a)に示すように、多結晶石英と長石の合計の値で多結晶石英の値を割ったモード比(Qp/(Qp+Qf))、多結晶石英と岩片の合計で多結晶石英の値を割ったモード比(Qp/(Qp+Qf+Ql))の値が低く、ユニットTIIc層の砂岩に似る。

出火の砂岩(Loc. D)：基質を18%含むワッケである。石英は23.6%含まれ、長石は斜長石が多く、14%含まれ、アルバイト群片は斜長石を示す斜長石が多く、マイクロケンジはすカリ長石が少量認められる。岩片では、中性～酸性火成岩片が多く、重鉱物は、緑柱石、黒鉛石、ジルコン、クサリ石、スフレ石、電気石、白雲母他不透明鉱物などから構成され、このほかに海綿石灰をわずかに含む。Fig. 3の(a)に示すように、Qp/(Qp+Qf)やQp/(Qp+Qf+Ql)の値が低く、Loc. Cの山面の砂岩と同様に、ユニットTIIc層の砂岩に似る。

高城山層(Loc. E, F, G)：基質の平均が約7%のアレナイトである。多結晶石英と多結晶石英はほぼ同量である。長石は約27%含まれ、カリ長石が多く、斜長石の約3倍である。カリ長石は、バーライト構造を持つものやマイクロケンジが多い。岩片は平均約14%であり、そのうち火成岩片が10%を占める。そのほとんどは、花崗岩質岩片であり中性火成岩片は皆無に近い。重鉱物は、ザクロ石、電気石、ジルコンなどから構成され、緑柱石をわずかに含む。

ボンボン山層(Loc. H, I)：基質の平均が8.7%のアレナイトである。多結晶石英と多結晶石英はほぼ同量である。長石は約30%含まれ、カリ長石が多く、斜長石の約2倍である。カリ長石は、バーライト構造を持つものやマイクロケンジを主とする。岩片は平均約19%であり、そのうち火成岩片が13.7%を占める。そのほとんどが、花崗岩質岩片である。重鉱物は、ザクロ石・電気石・ジルコンなどから構成され、緑柱石をわずかに含む。ボンボン山層の砂岩は高城山層のそれよりやや中性火成岩片が多く、斜長石も比較的多く石英の量少ない(Plate I)。

記の2地点(高城山層とボンボン山層)の砂岩層は石英と斜長石の量が同じようなが、ボンボン山層の砂岩組成比のパターン(Fig. 3(c))は高城山層のそれとほぼ同じで同質の砂岩であると考えられる。

考 察

1. 丹波帯と舞鶴帯の砂岩の岩相と堆積環境

ユニットTIIcの砂岩は、基質を多く含む淘洗の悪い岩片質砂岩であり(Plate Iの1, 1', 2, 2'), 堆積相も典型的なタービナイト起源の砂岩層ではなく、grain flowによる堆積物であると考えられることから、大陸斜面付近に堆積した未成熟の砂岩層であるとされている(楠, 1989; 楠・武蔵野, 1989)。

ユニットTIIcの砂岩は、淘洗の良いアレナイトであり、やや成熟した砂岩である(Plate II, 本ユニットの砂岩もユニットTIIcのそれと同様に、タービナイトの堆積相を示していない。また、Halobia石英岩やMonotis石を含むとともに、砂粒としてこれらに海綿石灰を含むことから、ユニットTIIcの砂岩層と同様か、あるいはよりもさらに浅い環境で堆積した砂岩層と推定される。

丹波帯の構造的最上部に位置する高城山層やボンボン山層の砂岩は、とともに淘洗のよいアレナイトであり、円錐された石英の粒子も認められ、成熟度が高い、両側の砂岩モード組成は、舞鶴帯の難波江層群のそれに類似する(Plate IV)。また、砂岩層は塊状ないし扁平関理を示す成層した砂岩を主体とし、粒化層理は認められない、この点においてても難波江層群下部層の砂岩に類似する。難波江層群の砂岩の堆積場が障壁環境と考えられている(志野, 1959)ことから、高城山層やボンボン山層の砂岩は類似する堆積環境であった可能性がある。

以上のように岩相の特徴と砂岩組成から、丹波帯における三峰紀新世からジュラ紀古世にいたる砂岩の堆積環境は、より浅海の堆積相から深海相への変化を示している。

一方、Choi et al. (1988)は舞鶴帯の中・下部三叠系夜久野層群の砂岩が、下部から上部になかかって酸性火成岩片や堆積岩片を主とする岩片に富む砂岩から長石や石英に富む砂岩に変化していくことを報告している。さらに上位の三峰紀新世の難波江層群下部層の砂岩は、花崗岩質の長石質アレナイトである。このように舞鶴帯三叠系の砂岩は全体として岩片質から次第に花崗岩質へと変化していく。

前述したように、丹波帯の高城山層の砂岩は、難波江層群下部層の砂岩と組成的に類似している。また、三峰紀新世のユニットTIIcの砂岩も難波江層群や夜久野層群の砂岩と組成的に類似している(楠・武蔵野, 1991)。このことから、舞鶴帯と丹波
帯は三叠紀新世に類似する砂岩が堆积するような
関連ある位置が堆積環境にあったと考えられる。そ
の後両地帯はジュラ紀以降別々の構造発達史をた
どったと考えられる。
ところで、砂岩組成は、舞鶴帯では三叠紀古世～新世にかけて、丹波帯においては三叠紀新世～ジュラ紀中・新世にかけて、岩片質のものから石
英質や花崗岩質の砂岩へと変化している（Fig. 4）。
岩片は、舞鶴帯の場合は酸性火成岩片および堆積岩
片が、丹波帯の場合は酸性火成岩片の中花崗岩質
岩片が多く含まれることは前述した通りである。ま
た、後背地が削製されて深成岩が露出したために花
崗岩質砂岩が形成されたとするならば、このような
一連の変化は後背地としての島弧や陸弧の活動期
から静穏期への変化に対応するものと考えられる。
すると丹波帯の場合、後背地における変動の始まり
はジュラ紀に入ってからではなく、三叠紀新世で
あったと推定される。この時期に後背地を大きく変
える陸側の変動があり、三叠紀新世からジュラ紀古
世にかけての岩片質砂岩が堆積するようになった
のであろう。ジュラ紀古世前期のユニット TIlc の
上部に挟在する礁岩、例えば宇治市北東部宇治川近
辺の礁岩（栃，1989）、周山シンフォーム内部の極楽
谷や河原谷の礁岩（丹波地帯研究グループ，1971），
より西方の観音崎の礁岩（清水ほか，1974）などの存
在はこの変動を裏付けていているかもしれない。これ
らの礁岩層は、小瀬から大瀬を含む不沸渕礁岩層で
あり、後背地における酸性火成活動を反映して酸性
火山岩や火成岩の礁が多い。
2. 丹波層群の砂岩組成とその時代的変遷
西南日本内帯に見られるチャート・碎屑岩シー
クエンスは、現世の海溝における堆積物との比較から
海溝充填堆積物と考えられている（井本・八尾，
1986）。つまり、遠洋性堆積物を乗せた海洋プレート
の陸域への接近にともなって、陸域から運搬された
粗粒碎屑物が堆積し、それらが海溝で剝取られて
付加した（Lash，1985）と考えられている。一般に、
付加した堆積物は構造的上位ほど碎屑岩の年代が
古い。丹波帯の丹波層群も上位のユニットほど年代
的に古くなっており、付加体としての構造特性を
もっている。したがって、丹波層群の各ユニットの
砂岩組成を構造的下位から上位へと年代的にきか
のぼって調べることは、時代ごとの後背地における
岩系構成の変化を見ることができる。
ところで、堆積物の組成は後背地の変化だけでなく、
後背地からの距離にも影響されて変化する。そ
ここで、海浜堆積物の成熟過程を殻物組成から議論し
た伊藤・増田（1986）の図にプロットし、給供源からの

Fig. 4. Triangular Q-F-L and Qm-K-P plots of the sandstone compositions from the southwestern
part of the Tamba Belt. Abbreviations are the same as those of Fig. 3.
距離や後背地の変化について検討をおこなった(Fig. 5)。なお、粒度による組成変化の影響を避けるため砂岩の粒度を中粒砂に限定した。ユニット TIIa（三疊紀新世）～ユニット TIIa（ジュラ紀中世）まで、全長石と単結晶石英＋全岩片とのモード比 [F/(Qm+F+Lt)] と単結晶石英と単結晶石英＋全岩片量とのモード比 [Qm/(Qm+Lt)] 共に増加しており、削剥にともなる後背地の変化を示している。ユニット TIIa（ジュラ紀中世）～ユニット TI（ジュラ紀新世）にかけては F/(Qm+F+Lt) が減少し、Qm/(Qm+Lt) が増加しており、後背地から堆積場が遠ざかるとともに、長石が分解する成熟過程の影響も受けていると考えられる。
以上のように陸弧（島弧）～海溝系のように限定された場における堆積物の長時間にわたる砂岩のモード組成変化は、後背地の削剥と陸からの運搬距離の影響を強く受けていると推定される。

ま と め

丹波帯に分布する丹波層群のうち、その上部に分布するユニット TIIa の砂岩およびその上位のボンボン山層と高城山層の砂岩について、堆積岩石学的検討を行なった結果、次のことが明らかとなった。
(1) 丹波層群の構造的最上位に分布する高城山層やボンボン山層は、丹波層群に含めるか否かは明確ではないが、舞鶴帯の離波江層群（三疊紀新世前期）に類似する組成や岩相を示し、深海底堆積物とは考えられない。
(2) (1) のことから三疊紀新世前期には丹波帯と舞鶴帯に類似した砂岩が堆積していたと考えられ、その後の構造運動を経て丹波帯ではジュラ紀に新たな堆積物が一連の変化を示しながら堆積していったと考えられる。
(3) 丹波帯の砂岩は、ジュラ紀古世から新世にかけて酸性火山岩・堆積岩質から花崗岩質へと変化する。この事実は、削剥過程にもとづく変化を示す。一方、三疊紀新世からジュラ紀古世にかけて砂岩は花崗岩質から中酸性火山岩質へと変化する。これは、後背地における火山活動の活発化を反映していると考えられる。また、この期間に堆積した堆積物は、より浅い海の堆積相から深海相へと変化している。
文 献
安藤寺 寿・田中功一・村利夫・村村成己・武蔵野実
1987, 京都西山地域について分布する“高栄層”緑色砂岩について、日本地质学会第94年学術大会講演要旨、241。
Choi, J.Y., Tokuoka, T., Nishimura, K. and Naka, T., 1988, Permian coarse clastics of the Maizuru Group (Yanahara area) and Nishiki Group (Nishiki area) and their provenance. 日本地質学会関西支部報, no. 106, 9。
同志社香里地学研究会, 1979, 京都西山出灰地域の地質、同志社香里中高等学校教育研究論. no. 7, 1-16。
本多敏・丹波地帯研究グループ, 1991, 丹波南西部の三層系の地質学会関西支部報, no. 112, 8-9。
井本伸広・八尾昭, 1986, 西南日本中・古生界の岩相層序について、日本地质学会関西支部報第100号記念例会講演要旨集、no. 100, 15-17。
井本伸広・松浦浩久・武蔵野実・清水大吉郎・石田志郎、1991, 5万万分の1地質図幅「園部」及び同説明書。地質調査所、68p。
石賀裕明, 1983, “丹波層群”を構成する2組の地層群について、京都大学紀要、42, 5-7。
志岐常正, 1979, 舞鶴地帯に分布する三層系および三層系の砂岩の2、3の性質、とくにmaturityの問題について、地質学会第34号会議論文集、no. 867, 301-303。
伊藤信・増田富士夫, 1986, 古東京湾の砂産成と堆積環境、堆積学研究会報、no. 25, 122。
楠 利夫, 1989, 丹波層系地層群央・瀬砂岩層の堆積機構と堆積場、地球科学、43, 211-231。
楠 利夫・武蔵野実, 1989, 丹波帯の砂岩の特性、同上、43, 75-84。
楠 利夫・武蔵野実, 1990, 超丹波帯・丹波帯および舞鶴帯のベルムー三層系砂岩－砂岩層とその解釈、同上、44, 1-11。
楠 利夫・武蔵野実, 1991, 丹波帯南西部の“非丹波層群”の砂岩－砂岩層解析とその比較、同上、45, 39-50。
楠 利夫・高城山地図研究グループ, 1991, 橿山盆地西部の丹波帯三層系、日本地质学会関西支部報、no. 112, 7-8。
Lash, G.G., 1985, Recognition of trench fill in orogenic flysch sequence. Geology, 13, 867-870。
武蔵野実・中智・村利夫, 1992, 丹波帯の構造的上限に見える三層系砂岩について、京都教育大学紀要、B, no. 80, 1-9。
坂口重雄, 1959, 兵庫県篠山盆地の層序と構造－丹波地帯南部の地質(2)－、大阪芸術大学紀要、no. 8, 1970。
三波尾の南部の丹波帯古生界の研究、大阪芸術大学紀要、no. 19, 13-31。
志岐常正, 1959, 舞鶴地帯に分布する三層系および三層系の砂岩の2、3の性質、とくにmaturityの問題について、地球科学、42, 5-7。
清水大吉郎・志岐常正・井本伸広・藤原重彦・吉田光広、1974, 先述丹波層群－丹波層群の岩相から見た二層記酸性火成活動－、GDPマグマ連絡誌、no. 2, 56-59。
下西繁義・丹波地帯研究グループ, 1981, 丹波層群－砂岩層からのモノチス化石の産出、日本地質学会関西支部報、no. 89, 3-4。
丹波地帯研究グループ, 1971, 丹波地帯の生界(その2)京都府北桑田郡京北町南部の生界、地球科学、25, 211-218。
戸倉則正・高城山団体研究グループ, 1987, 兵庫県篠山地域に分布する緑色砂岩について、日本地質学会第94年学術大会講演要旨、240。

西南日本内帯の丹波帯に分布する丹波層群のうち, その上部に分布するユニット TIIId の砂岩およびその上位のポンポン山層と高城山層の砂岩について, 堆積岩石学的検討を行なった。

ユニット TIIId の砂岩は, ユニット TIIc の砂岩より相対的に石英や斜長石が多く岩片量が少ない。高城山層やポンポン山層の砂岩は, 成熟度・淘汰ともに良く, 石英やカリ長石が多く岩片量が少ないアルコース質砂岩である。これらの砂岩は, 地帯を越えて舞鶴帯の三畳紀新世の砂岩に類似しており, しかも丹波層群の堆積環境より浅い堆積場のものである。丹波帯の砂岩が, 三畳紀新世のアルコース質でより浅海を示す砂岩からジュラ紀古世の石質で深海相へ変化していったことは, この時期に丹波帯の後背地および堆積場で, 主な構造運動の活発化があったことを示している。

Explanation of Plates

Plate I
Photomicrographs showing TIIc-type lithic sandstones (1, 1') from the lower Jurassic, and arkosic sandstones (2, 2') of the Takashiroyama and Pompomyama Formations. Left: plane-polarized light, Right: crossed polars.

1・1': Loc. D in Fig. 2, 2・2': This locality is shown with closed circle in Fig. 2, 3・3': Loc. 1 in Fig. 2 (Pompomyama Formation), 4・4': Loc. F in Fig. 2 (Takashiroyama Formation).

Plate II
Photomicrographs showing TIIId-type lithic sandstones from the upper Triassic in the Tamba Belt. Left: plane-polarized light, Right: crossed polars.

1・1': Loc. B in Fig. 2, 2・2': Loc. A in Fig. 2, 3・3': Loc. D in Fig. 2, 4・4': Loc. C in Fig. 2.
楠 利夫・武蔵野実：Plate II