B-1 側頭葉てんかんの脳血流定量SPECT および 
123I-lomazenil SPECTにおける検討

岡山大学医学部神経精神医学教室
○東洋寺彰
○佐藤俊男
京都府

123I-lomazenil はSPECT用の脳の中枢性ベンゾジアゼピン系（BzR)受容体(BZR)の活性化するために開発された。脳の主要な受容体はBZrに強く結合し、2～3日後にSPECT検査で脳内分布に一致した分布が見られる。

今回我々は脳波異常所見に対応した脳血流SPECTについて報告した側頭葉てんかん患者を対象に123I-lomazenil SPECTを施行し、比較検討したので報告する。

【対象と方法】当院外来通院あるいは入院中の側頭葉てんかんの患者。頭皮上脳波検査で一過性の異常を認めた者10名（男性8名、女性2名、平均年齢38.3歳、range 22-56）。

SPECT検査は被験者対応の同意を得、撮像は発作間期、安静状態時に行い、リング型検出器Shirakawa SFT-030 を用いた。

脳血流SPECT には123I-I-WP を用い、動脈血流量を測定を行い定量化した。123I-lomazenil SPECT は、10-20 分（15分中心）の画像を早期像、175-185 分（180分中心）の画像を後期像とした。全例にMRI 検査を行っている。

【結果・考察】脳波SPECTでは昨年報告したように、てんかん焦点部位に関連する所見は10症例中5例(50%)の症例に認めた。その部位は側頭葉に比べて全て低血流であり、脳波焦点と部位的一致をしていた。また側頭葉の患側の局所脳血流は健側に比べ有意に低かった(p<0.01)。これに対し123I-lomazenil SPECTでは、てんかん焦点部位に関連する所見は10症例中6例(60%)、早期像の判定を含めると8例(80%)に認めた。脳波焦点部位において認められた異常所見は健側に比べて全て低血流であるが、側頭葉の患側対照検出比は側頭葉患側常帯発達において有意に低かった(p<0.01)。

B-2 ラットのカイン酸誘発発作モデルにおけるミクロリアの活性化とその脳内分布

九州大学医学部神経内科

目的: ミクロリアは脳虚血や種々の神經障害等によって局所性に活性化されることが実験的に報告されているが、てんかんにおけるミクロリア化についてはあまり知られていない。今回、ラットのカイン酸(KA)誘発発作モデルを用いて、発作によるニューロンの形態学的変化とSPECTでのミクロリアの活性化の脳内分布について検討した。

方法: 薫室SDラットを用い、ネプラスミル麻酔下にKA注入用ガラス瓶を左背側海馬に挿入し、術後7日目にKA (1.2μg/0.6μl)をカニューレより注入高速子を結紮、回避の追加を結核海馬部のSPECTを観察した。対照の1匹は術後12時間後に結核海馬部をSPECTを観察した。

結果: 結果GとKAG投与後4時間では明らかにミクロリアの活性化を認めなかった。8時間例で、左右の海馬、外側膝核、左側膝核等の選択的なミクロリアの活性化を認めた。24時間例ではこれらの部位に加え、右側膝核、左側膝核の強いミクロリアの活性化を認めた。しかし、脳幹、小脳ではミクロリアの活性化を認めなかった。海馬にはニューロンの形態学的変化を認めなかった。

結論: カイン酸誘発発作モデルによって、ニューロンの形態学的変化が生じる以前の比較的早期に、てんかん活動性伝播区を従って続シナプス性にミクロリアの活性化が生じることを明らかにした。