Isomer effects of bipyridyl on the synergistic extraction of europium(III) with \(\beta \)-diketone and bipyridyl

Norihito Sekishita and Yuko Hasegawa

*Department of Chemistry, Faculty of Science, Science University of Tokyo, Shinjuku-ku, Tokyo 162-8601

(Received 2 May 2002, Accepted 8 July 2002)

Europium(III) was extracted into chloroform with pivaloyltribufluoracetone (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedion, PTA) and 2,2'-bipyridyl (2,2'-bpy) or with PTA and 4,4'-bipyridyl (4,4'-bpy). By combining the extractants, the extraction was improved, although the enhancement with PTA and 2,2'-bpy was much larger than that with PTA and 4,4'-bpy (the distribution ratio in the presence of \(10^{-2} \) M 2,2'-bpy was enhanced by a factor of almost 10\(^4 \), while that in the presence of \(10^{-2} \) M 4,4'-bpy was as high as 10 times, compared to the distribution ratio in the extraction with PTA itself, reflecting the function of the bidentate (2,2'-bpy) and the monodentate (4,4'-bpy). In addition, the extracted species with PTA and 4,4'-bpy were accompanied by four PTA and one 4,4'-bpy, Eu\(\text{As} \cdot \text{HA} \cdot \text{B} \) as well as Eu\(\text{As} \), Eu\(\text{As} \cdot \text{B} \) and Eu\(\text{As} \cdot 2\text{B} \). As the extracted species of lanthanoids(III) with \(\beta \)-diketone and a monodentate Lewis base, such as tributylphosphosphate, Eu\(\text{As} \), Eu\(\text{As} \cdot \text{B} \) and Eu\(\text{As} \cdot 2\text{B} \) were reported before. The extraction as Eu\(\text{As} \cdot \text{HA} \cdot \text{B} \) may reflect that the Lewis basicity of 4,4'-bpy is similar to that of PTA.

Keywords : synergistic extraction; 2,2'-bipyridyl; 4,4'-bipyridyl; europium(III) chelate; isomer effect.

1 緒言

ランタノイド(III)を\(\beta \)-ジケトンとルイス塩基で抽出すると著しい抽出の改善が見られる協同効果は，ルイス塩基にトリフェニルホスフィンオキシド（TPPO）\(^{11} \)やリン酸トリプチル（TBP）\(^{12} \)のような単座配位子を用いると，ランタノイドの原子番号が増加するに伴って小さくなるが，1,10-フェナントロリンのような2座配位子を用いると，逆にランタノイドの原子番号の増加に伴って協同効果も大きくなる例が報告されている\(^{13} \)。しかし報告されている単座配位子と2座配位子は，電子供与原子がOであったりNであったり，分子容や構造の違いも大きい，

本研究では二つのビピリジンからなるが，電子供与原子で

あるN原子の位置が異なる2,2'-ビピリジン（2,2'-bpy）と

4,4'-ビピリジル（4,4'-bpy）を，それぞれ2座配位子と単

座配位子のルイス塩基として用いたとき，それが協同効果

にどのようにかかわるかを調べるために，ユウロビウム

(III) (Eu\(^{3+} \)) のビパロイルトリフルオロアセトン（PTA）

と2,2'-ビピリジルあるいは4,4'-ビピリジルによる協同抽

出を調べた。

2 実験

2.1 試薬

試薬はすべて特級を用いた。1,1,1-トリフルオロ-5,5-ジメチル-2,4ヘキサンジオン（ビパロイルトリフルオロアセトン，PTA，HA）は同人化学研究所，2,2'-bpy（純度: 99.5%）はMerck KGaA（ドイツ），4,4'-bpy（純度: 98.0%）は東京化成，酸化ユロビウム（純度: 99.9%）
は三塩化過酸塩から購入した。ユウロピウム(III)溶液は酸化ユウロピウムを小過剰の過塩素酸に溶解してからイオン交換水で適宜希釈しNaClO₄でイオン濃度を調整して用いた。正確なユウロピウム(III)の濃度はEDTA水溶液で標定した。クロロホルムは使用前にイオン交換水で5回洗浄して用いた。

2・2 操作
実験は298 ± 1 Kの恒温室で行い、全電解質溶液は過塩素酸ナトリウムで0.1 M (1 M = 1 mol dm⁻³) に調製した。水相の水素イオンを用いて過塩素酸ナトリウムからなる水溶液を、pH 2.00 (pH = −log [H⁺]) の基準として電位差計 (Corning, Model 155) で測定した。

2・2・1 ペピリジンの酸解離定数 (Kₐ) と二相間分配定数

この4.4'-bpyのクロロホルム溶液を0.01 Mとすると、同体積のpHを0.1 Mの過塩素酸ナトリウム水溶液とを1時間振り混ぜた。有機相、水相共に適宜希釈し、有機相ではピーク波長322nm (ε₈₂ = 1.4 × 10⁶)，水相ではピーク波長299nm (ε₂₉₉ = 1.5 × 10⁵) における吸光度を分光光度計 (日立 U-3500) で測定し、両相に分配したbpy濃度を求め、両相のbpyの濃度比を分配比とした。

2・2・2 Eu³⁺のPTAとbpyによる抽出　pH2.3〜3.3 (2,2'-bpy) 又は3.9〜4.5 (4,4'-bpy) に調整したEu³⁺を含むNaClO₄水溶液と同体積のPTAを水素塩基 (B, 2,2'-bpy) もしくは4,4'-bpy) を含むクロロホルム溶液を1時間振り混ぜた。有機相に抽出されたEu³⁺は0.1 M過塩素酸に逆抽出後、水相に残ったEu³⁺は0.1 M HClO₄で適宜希釈しICP-AES装置 (日立 P-4000) で定量した。両相のEu³⁺の濃度比を分配比とした。別にPTA (pH2.05〜0.15 M) のみでEu³⁺をpH3.7〜4.5の水溶液から有機溶媒中に抽出した。

3 結果と考察

3・1 ペピリジンの酸解離定数 (Kₐ) と二相間分配定数

4,4'-bpyを0.1 M NaClO₄とCHCl₃に分配させ、そのbpyの分配比 (log D) とpHが関係をプロットしたところ、傾き1.5と傾き0の2本の直線が得られた。このデータを1,10-フェナントリオンの場合と同様、

\[D = K_a (1 + [H^+] / K_a)^{-1} \]

に基づいて解析し、Kₐ (Kₐ = [H⁺][B]/Kₐ⁻¹) として4.9。二相間分配定数 (Kₐ = [B][H⁺]/Kₐ⁻¹) はKₐとして1.95 ± 0.05を得た。既にえられている2,2'-bpyでは、pKₐ = 4.3、log Kₐ = 2.65 ± 0.03である。ペピリジンのpKₐは5.22である。4,4'-bpyは2,2'-bpyに比べて二つのNが離れた位置にあるのでペピリジンのpKₐに近い値をとるが、なお、隙接のペピリジン環の影響を受けてpKₐの値は幾分小さい。

3・2 Eu³⁺のPTAと水素塩基による抽出

0.1 M PTAクロロホルム溶液のEu³⁺を抽出したときのlog DをpHの関数としてFig. 1に○印で示す。また、pHを固定化したlog Dのlog [HA]に対するプロットをFig. 2の○印で示す。どちらの図でも○印で表示したブロットは傾き3の直線となった。このことからEu³⁺のPTAおよび抽出平衡は式の式で表すことができる。この平衡の抽出定数をKₐで表す。

\[Eu^{3+} + 3HA \rightarrow EuA_{(aq)} + 3H^+ \]

Kₐ = [EuA]_[(aq)][H⁺]³[Eu³⁺]⁻³[(HA)]⁻³ (1)

Fig. 1と2の結果から分配合数はEu³⁺/[Eu³⁺]で表すことができるのでこれらのデータを解析し、log Kₐとして−10.61を得た。

Fig. 1には2.5 × 10⁻³ Mの2,2'-bpy (△印)、あるいは4,4'-bpy (□印) 共存下で0.1 M PTAクロロホルム溶液にEu³⁺を抽出したときのlog DとpHの関係を示している。プロットの傾きはそれらも+3である。しかし、Fig. 2に示したように、5 × 10⁻³ Mの2,2'-bpyあるいは4,4'-bpyの共存下でEu³⁺をPTA/CHCl₃に抽出すると、2,2'-bpy共存下ではlog Dはlog [HA]に対して傾き3の直線になるが（水相のpH2.98〜3.28, log D = −1.37〜−0.53)。
ノート：長谷川、βジケトンとピピリジンによるEu(III)の協同抽出の大きさに及ぼすピピリジンの異性体効果

Fig. 2 Distribution ratio of europium(III) as a function of PTA concentration at equilibrium
aq: 0.1 M NaClO₄, pC₇₇ 2.98～3.28 (2,2'-bpy), 3.77～4.31 (4,4'-bpy); org: CHCl₃ containing PTA (c), PTA + 5.0 × 10⁻³ M 2,2'-bpy (△), PTA + 5.0 × 10⁻³ M 4,4'-bpy (□)。

4,4'-bpy 共存下では、傾きは PTA 濃度の低いところでは +3 であるが、濃度が高くなるにつれて +3 より大きくなら (水相の pC₇₇ は 3.77～4.31, log D は +1.44～−0.47).

以上の結果は、Eu⁺⁺の PTA と 2,2'-bpy による抽出は

D = Σ [Eu₅⁺⁺nB]ₐ [Eu⁺⁺]⁻¹

で表されるが、PTA と 4,4'-bpy による抽出では

D = (Σ [Eu₅⁺⁺nB]ₐ + [Eu₅⁺⁺HA·Bₐ]ₐ [Eu⁺⁺]⁻¹

のように、PTA が 3 分子だけではなく 4 分子関与した抽出種があることを意味する。

次に PTA キレートに伴って抽出する bpy の数を調べるために、PTA と bpy で抽出したときの Eu⁺⁺ の分配比に対する bpy 濃度の依存性を調べた。

Fig. 3 は 0.05 M PTA と種々の濃度の 2,2'-bpy 又は 4,4'-bpy で、Eu⁺⁺をクロロホルムに抽出したときの分配比と有機相中の bpy の濃度との関係である。△印で示した 2,2'-bpy では、分配比は bpy 濃度に比例して増大している。これは式 (2) の n が 1 であることを示す。したがって、付加錯体、Eu₅⁺⁺B の生成定数 β₅⁺⁺ [Eu₅⁺⁺Bₐ]⁻¹ [B⁺]⁻¹) と Kₖₕ の式 (2) に代入すると、D[H⁺]⁻¹ [HA]⁻¹ = β₅⁺⁺ Kₖₕ [B⁺] と関係が得られる。Fig. 3 のデータを解析して 2,2'-bpy に対する β₅⁺⁺ を算出した。

一方、□で示した 4,4'-bpy の場合は bpy 濃度が低いところでは分配比はほぼ一定であるが、その後 bpy 濃度の増加に伴って分配比も増加し、最も濃度の高い領域では傾きは +2 に近づく。これは式 (3) の n が 0, 1 及び 2 をとることを示す。したがって式 (3) は

D = ([Eu₅⁺⁺]ₐ + [Eu₅⁺⁺Bₐ] [Eu⁺⁺]⁻¹

となり、ここで抽出定数 Kₖₕ と、Eu₅⁺⁺B の生成定数 β₅⁺⁺, Eu₅⁺⁺B の生成定数 β₅⁺⁺ (=[Eu₅⁺⁺] [Eu₅⁺⁺B][B⁺]⁻¹) と 4 分子の PTA と 1 分子の 4,4'-bpy を伴う錯体の生成定数 β₅⁺⁺ (=[Eu₅⁺⁺HA·Bₐ][Eu⁺⁺][HA]⁻¹ [B⁺]⁻¹) を代入して整理すると

log D = 3pC₇₇ - 3log [HA]ₐ

が得られる。Fig. 3 のデータは PTA の初濃度は 0.05 M に対し、Eu⁺⁺の初濃度は最大で 3 × 10⁻⁴ M であり、D は 3 を超えていないので、Eu⁺⁺の抽出に使われた PTA は大きく見積もってもたしかに 2 × 10⁻⁴ M に過ぎない。したが
Table 1 The equilibrium constants of Eu3+ complexes with PTA and bpy

<table>
<thead>
<tr>
<th></th>
<th>2,2'-Bipyridyl</th>
<th>4,4'-Bipyridyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>log K_{ee}</td>
<td>-10.61</td>
<td></td>
</tr>
<tr>
<td>log β_{51}</td>
<td>5.8</td>
<td>2.2</td>
</tr>
<tr>
<td>log β_{41}</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>log β_{21}</td>
<td>-</td>
<td>4.2</td>
</tr>
</tbody>
</table>

aq: 0.1 M NaClO\textsubscript{4}; org: CHCl\textsubscript{3} containing PTA and 2,2'-bpy or 4,4'-bpy; temp.: 298 K.

$K_{ee} = [\text{EuA}_3] \gamma \gamma [\text{bpy}]^{-4} [\text{HA}]^{-9}, \beta_{51} = [\text{EuA}_4 \cdot n\text{B}_2][\text{EuA}_3]^{-1} [\text{B}]^{-1}, \beta = [\text{EuA} \cdot \text{HA} \cdot \text{B}_2][\text{EuA}_2]^{-1} [\text{HA}]^{-2} [\text{B}]^{-1}$

って、測定した [B]の濃度範囲では [HA]を一定とみなすことができ、(β_{51} + β_{41} [HA])も一定値となる。データをカーブフィッティング法により解析した結果、log β_{51} = 4.16, 2(β_{51} + 0.1 β_{41}) = 4.2 \times 10^9$ となった。Fig. 3 のデータを解析しただけでは β_{51} と β_{41} を分離できない。しかし、Fig. 1 及び 2 の D に対しても式 (5) は成り立つので (β_{51} + 0.1 β_{41}) の関係を保ちながら、Fig. 1 と 2 のすべての実測点が満足するように逐次近似法で β_{51} と β_{41} を決める。得られた定数を Table 1 に示した。これらの値を式 (5) に代入して Fig. 1 から Fig. 3 の 4,4'-bpy の実線を算出した。

上記のように、測定した全濃度範囲にわたって 2 位配位子である 2,2'-bpy は Eu3+ の PTA キレート、EuAs, に 1:1 で配位した錯体を生成したのに対し、4,4'-bpy と PTA の Eu3+ を抽出すると EuA, EuA, 4,4'-bpy が分子だけと 2 分子配位した錯体、EuA, EuA, 4,4'-bpy, 更に 4 分子の PTA と 1 分子の 4,4'-bpy とを伴った 4 種類の錯体が同時に抽出される。複雑である。

これまでに報告されている β-ジケットと单座のルイス塩基である TPO や TBP では、トリス(β-ジケット) キレートに 1 分子だけで 2 分子のルイス塩基が付加した錯体の生成は報告されているが、4 分子の β-ジケットを伴う錯体は報告されていない。これまでも TPO と TBP は 4,4'-bpy に比べっとルイス塩基性が高いので、これらと β-ジケットが競合することはなく、4,4'-bpy のルイス塩基性は PTA とあまり変わらないために、トリス(β-ジケット) キレートに更に 1 分子の PTA と 1 分子の bpy が関与した錯体が生成可能となったのであろう。2 座配位子として働く 2,2'-bpy が 1 分子付加した錯体のみを生成し、PTA が 4 分子関与した錯体の生成が無視できることもこのことを支持している。

組成 EuAsHB の錯体が、EuAs やのキレートに 1 分子の PTA と bpy を配置しているのか、EuAs やの錯イオンと HB' 型のブリリアムイオンとのイオン対であるのか、今回導かれた化学バランスのデータを解析しただけでは分からない。もし、非解離の PTA のカルボニル基と 4,4'-bpy の N 原子が EuA の Eu3+ に対し同様な力で作用するならば、EuAs やのキレートに 1 分子の PTA と bpyが同時に配位した錯体が生成すると考えることができる。また、Eu3+をトリトラプチルアンモニウム (tba') 共存で、-CF\textsubscript{3} 基をもたないベンゾイルアセトンで抽出しても、EuAs-tba' 型のイオン対は抽出されない、-CF\textsubscript{3} 基をもつ β-ジケット、ベンゾイルトリフルオロアセトンで抽出すると、[A'] が 10^{-6} M 以下であっても EuAs-tba' 型のイオン対として抽出される。この事例から類推すると、PTA も-CF\textsubscript{3} 基をもつので 4,4'-bpy が PTA のプロトンを受けるイオンとなり、-CF\textsubscript{3} 基を有する PTA と錯イオンを作った Eu3+ とイオン対として抽出されているように思われる。錯体種の構造については更に実験データを集めて結論できない。

以上、異性体の 2,2'-bpy と 4,4'-bpy は分子容が同じで、当然配位原子も同じであるが、2 座配位子として働く 2,2'-bpy は非常に安定な 1 分子付加錯体を生成するのにに対し、4,4'-bpy ではトリス PTA キレートに 2 分子の bpy が配位した錯体とはほぼ同じ安定度をもつ bpy と PTA が 1 分子ずつ配位した錯体の抽出が示唆された。

文献