五酸化バリウム、6価クロム、鉛等の気中有害物質へのばく露に伴う職業病の発生を防止することを目的として、これらの労働環境中の空気濃度が測定されている。その測定結果を元に、気中有害物質の制御や、防護マスクといった保護具の選択が行われる。気中有害物質にはガス状物質と粒子状物質がある。粒子状物質がセンサー等によりリアルタイムに定性・定量可能に至り、粒子状物質の分析は、粒子の捕集後、溶解・抽出等の前処理を必要とすることから、この捕集及び中間処理の過程で、1.短時間における有害物質の濃度変化、2.粒子を構成する物質の酸化状態やその他の化学状態、3.粒子径・形状と粒子の構成物質の関係といった種々の情報が失われる場合が多い。気中粒子状物質の挙動をより精密に理解し、労働環境を改善するために、これらの情報を得る分析技術が必要とされている。本論文では、これらの要求を満たすために、分化化学からのアプローチとして、高速液体クロマトグラフィー（HPLC）やキャビリヤー電気泳動（CE）を用いた粒子状物質中金属汚染物の化学状態別分析、エアロゾル科学からのアプローチとして、粒子を直接誘導結合プラズマ質量分析計（ICP-MS）や誘導結合プラズマ原子発光分光光度計（ICP-AES）に導入するリアルタイム分析の研究を行った。

本論文は6の章から成り、第1章及び第2章では研究の背景、及び研究内容を理解するための助けとなる事項の説明を行い、著者の具体的研究成果は3、4、5章に記載した。

第1章「日本及び世界における労働環境中有害物質濃度の評価法及び有害金属分析の現状」では、総論として、労働衛生と呼ばれる職業病対策の分野における有害物質分析の実態、発生源濃度の時間変化や作業中の労働者の移動等に対応するために行われている作業環境測定、個人曝露濃度測定といった労働衛生者有のサンプリング方法及び分析結果の解析法に関して説明した。

第2章「現在労働環境中有害金属分類に従いつくされている分析法及び本研究で用いた分析法の原理と実際」では、第3章以降の内容説明に必要な予備知識を補う目的で、
れた。このように、アセチルアセトンの直接作用と陽イオン水素の併用により粒子状6個クロムのキャラクタリゼーションを行うことを考えた。

第5章「微分型電気移動度粒径解析装置(DMA)とICP-AES/MSを用いたエアロゾル粒子の粒径別リアルタイム元素分析法」では、空気中のエアロゾル粒子を直接ICP-AESあるいはICP-MSに導入する方法を検討した。気中粒子のICPへの直接導入は、空気の混入に伴うプラスマ光を回収するために、試料をプラスマガスであるアルゴンで希釈する必要があり、測定感度が低くなってしまう問題があった。本研究では、空気中のエアロゾルから、特定の粒子径だけのエアロゾル(単分散エアロゾル)を作成分型電気移動度粒径解析装置(DMA)が、試料エアロゾルから粒子を浄化空気中に取り込んで単分散エアロゾルを生成することに着目し、浄化空気をアルゴンに置換した「ガス変換DMA」を新たに製作し、このDNAが作成の単分散「アルゴンゾル」をプラスマ無希釈で導入した。

ICP-AESとICP-MSの双方ともアルゴンゾルの直接導入による粒子の検出は可能であり、このうちICP-MSを検出器とした「DMA-ICP-MS」では、リアルタイム分析が可能であった。

試料エアロゾル発生装置で発生させた硝酸鉀エアロゾルにより、DMA-ICP-MSの特性・感度評価を行った。その結果、ガス変換DMAは通常のDMAと同様の粒子径別性能を持っていること、粒径20〜140nmの範囲でDMA-ICP-MSは一様の感度を示すこと等を確認した。他の元素での動作確認を行うため、24種類の金属を用いて試験エアロゾルを生成し、そのいずれでもDNA-ICP-MSで検出することを確認した。化学状態の影響を見るため、6種の元素(Cr, Mn, Y, La, Ce, Sm)で塩化物と硝酸塩の粒子をDMA-ICP-MSで分析したところ、すべての元素で塩化物は硝酸塩より感度を示した。混合成分粒子の分析例として食塩に微量の塩化イットリウムを添加した試験粒子の分析を行った。その結果Y含有量が0.1〜10%の範囲内でYに対するDMA-ICP-MSの感度が一定であることを確認し、ガス変換DMAがICP-MSへの気中懸浮試料導入装置として有用であることを立証した。

第6章「総括」では、得られた研究成果を総合的に説明した。

* 表紙

☆

Digest of Doctoral Dissertation

Novel characterization method for airborne particulate matter in workplace-chemical speciation method for heavy metals and real time size classified analysis
Mitsutoshi TAKAYA
Department of work environment evaluation, National Institute of Industrial Health, 6-21-1, Nagao, Tamak, Kawasaki-shi, Kanagawa, 214-8585
(Awarded by Tokyo Metropolitan University dated February 19, 2004)

The speciation and real-time analysis of airborne inorganic particulate matter were investigated as follows: A selective determination of the concentrations of vanadium(V) and vanadium(IV) in particulate matter was achieved by connecting HPLC to ICP-AES as a detector. The method was applied to confirm the purity used for the sample particle of an animal experiment to clarify acute toxicity in lung after exposure to VO. An analytical method of acetylacetone-chromium by micellar electro kinetic chromatography (MEKC) was developed. Using the method, 160μg g⁻¹ of chromium in aqueous solution was measurable. The speciation of particulate chromium was attempted using the method. Chromium(IV) oxide was detected selectively by adding acetylacetonel to the sample without solvent and chromium in potassium dichromate was detected by using acetylacetonel with 18-crown-8. The gas change function was added to a monodisperse aerosol generator (Differential Mobility Analyzer, DMA). Aerosol particles dispersed in the argon, "argonosol", was made by the gas change DMA, and was directly introduced into ICP-MS without argon dilution to avoid plasma elimination. The performance of the device (DMA-ICP-MS) was evaluated by using various test particles from a pneumatic nebulizer. DMA-ICP-MS could analyze the airborne particulate matter in the range of diameters of particles 20〜140 nm in real time.

(Received April 21, 2004)

Keywords: airborne particulate matter; vanadium pentoxide; hexavalent chromium; capillary electrophoresis; real time measurement; direct introduction; ICP-MS.