長期測定データに基づく皮膚含水率予測モデルの検討

高田 暁

1)神戸大学大学院工学研究科

Study on Prediction of Skin Moisture Content Based on Measurement for Long Period

Satoru Takada

1)Graduate School of Engineering, Kobe University

Abstract: In order to quantitatively clarify the indoor thermal environmental conditions for avoiding occupants' discomfort due to dryness of skin, a measurement of moisture content of skin throughout a year was conducted for several young subjects. It was shown that the moisture content of the skin shows higher correlation with the absolute and relative humidity than with the air temperature. At the same time, by using a numerical model based on simultaneous heat and moisture transfer equation, the experimental results were analyzed with neglecting the heat and moisture capacitance of the skin. As the results, for variations with long cycle (approximately more than 1 day) found in the experimental results could be reproduced in the calculated results, and thus this model is worth developing furthermore for prediction for skin moisture content of the individuals.

Key words: Skin moisture content, Measurement, Prediction, Sensation of dryness, Thermal environment

要旨: 皮膚の乾燥による不快感が無い状態に室内環境を保つための温熱環境条件を量的に明らかにすることを目的として、皮膚含水率を複数の被験者について1年を通じて継続的に測定し、その変動特性を検討し、被験者間の温湿度との相関を検討した。その結果、皮膚含水率は、人体周辺の気温と湿度、相対湿度との相関が高いことが示された。また、皮膚角層内の瞬時定常を仮定した熱水分移動モデルを用いて測定結果の解析を行ったところ、1日、1週間、1年など、比較の長期周期の変動の傾向を説明する可能性を示した。

キーワード: 皮膚含水率、長期実測、予測、乾燥感、温熱環境

1. はじめに

皮膚、粘膜での含水状態と乾燥感には強い関連があると考えられ、乾燥感の予測を可能とするためには、含水状態を決める生理、物理的メカニズムを明らかにすることが必要である。著者らは温湿度や風速など温熱環境要素と皮膚、眼球、気道の含水状態との関係を検討し、皮膚、粘膜の乾燥のモデル化試みている（Takada et al. 2013）。皮膚含水率に関しては、吉田ら（1983）による夏と冬の比較、Sunwooら（2006）、保田ら（2007）の低湿時と高湿時の比較など、複数の測定例が存在しているが、皮膚含水率を形成されるメカニズムの解明や皮膚の乾燥感評価には至っていない。皮膚含水率を決める要因を明らかにし、それをモデル化する観点からは、多様な状況での皮膚含水率測定が不可欠である。この観点から、著者らは、冬季を中心とした結果を報告し（鶴原ら 2013）、湿度変化に対する皮膚角層内含水率分布の変化性状に関するモデルの提案を行っている（鶴原ら 2014）。本論文では、約1年におわたる調査結果と、既に提案している皮膚角層内含水率予測のモデルによる皮膚含水率の予測を試みた結果を報告する。

2. 方法

2.1 測定方法

大学の研究室内でデスクワークを行っている学生6名（表1）を対象として、気分分析（スクラ社製、MT-808S）により、手首の指骨節の一定の位置で皮膚含水率を1日に数回測定し、測定時の室温湿度との関係を調査する。被験者には、①1日に数回測定する、②測定間隔を30分以上あける、③外気から室内に戻った後60分間は測定を行わない、④着衣の袖が測定部にかからない、⑤測定部位にハンドクリームを塗らない、⑥皮膚の乾燥が明らかに分かる程度の発汗時には測定しないことを依頼した。皮膚含水率の測定は被験者自身が行い、その測定値、測定時刻を被験者が記録した。室の温湿度は別途5分間隔で自動記録した。測定期間中被験者の着衣、食事等の生活行動に制限は加えていない。測定期間は、2013年9月〜2014年8月である。
2.2 解析方法
被験者周辺の湿温度から皮膚含水率を予測するモデルについて述べる。これは、皮膚角層を多孔質材料と捉えたモデル化であり、開原ら（2014）により提案されているものに準じている（図 1）。開原らは非定常過程への適用を前提としているが、ここでは、皮膚の角質層内での瞬時定常を仮定した簡易なモデルを検討する。この時、皮膚表面から奥への深さ方向 1 次元における熱水分同時移動方程式（蒸気拡散支配領域）は、皮膚表面に熟・湿気伝達を考慮した第 3 種境界条件、解析対象の角層下部の飽和層表面で温度と飽和絶対湿温度を与える第 1 種境界条件のもとで、以下となる。

\[
\theta(x) = \theta_x - \frac{1}{\alpha + \lambda} (\theta_x - \theta_c)
\]

(1)

\[
X(x) = X_x - \frac{1}{\alpha + \lambda} (X_x - X_c)
\]

(2)

一方、平衡含水率曲線 F より、含水率の分布が求まる。

\[
w(x) = F(\theta(x), X(x))
\]

(3)

【記号】\(\theta\) : 角層内温度[°C]，\(\lambda\) : 熱伝導率[W/mK]，\(x\) : 角厚[m]，\(\alpha\) : 総合熱伝導率[W/mK]，\(\lambda\) : 角層内層の厚さ[m]，\(X\) : 飽和絶対湿温度[kg/kg]，\(X_{\text{sat}}\) : 湿気伝導率[kg/m/s/(kg/kg)]，\(w\) : 質量含水率[kg/kg]，[添字] α : 周辺空気

図 1 皮膚表層の構成と解析対象

計算に用いた数値等を表 2、図 2 に示す。基本的に、開原ら（2014）が非定常計算に用いた数値と同じであるが、皮膚温については、評価する環境の温湿度条件を Stolwijk（1971）のモデルに入力し、腕部皮膚温について求めた定常解 (0.6clo, 1Met, 湿度 = 平均放射温度, \(\alpha\)は表 2 の値) を飽和層表面に与える（対照のため、温度を 33.5°C とする条件を計算）。

表 1 被験者の属性

<table>
<thead>
<tr>
<th>被験者</th>
<th>年齢</th>
<th>性別</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23</td>
<td>female</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>male</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>male</td>
</tr>
<tr>
<td>D</td>
<td>22</td>
<td>female</td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>male</td>
</tr>
<tr>
<td>F</td>
<td>22</td>
<td>male</td>
</tr>
</tbody>
</table>

注 : 被験者 D のみ 2014 年 5 月より参加

図 2 角層の平衡含水率曲線（開原ら 2014）

3. 結果
3.1 皮膚含水率の測定結果
通年で参加した被験者 5 名について、皮膚含水率と被験者周辺の気温・相対温度・絶対温度の相関図を図 3 ～5 に示す。いずれの被験者についても、皮膚含水率は温度の相関に対して正の相関を示している（図 6）。図 3 より、気温が 24°C を超える場合、被験者 A を除き、40%以上の高い値が観測される。これは発汗の影響と考えられる。本測定はセンサを皮膚表面に密着させて静電容量を測る方法であり、発汗がある場合、皮膚表面の液水が測定値に影響を及ぼし、測定値は皮膚含水率と言えない。そこで、発汗の影響は少ないと思われるので、評価する環境の温湿度条件を考慮する必要がある。

表 3 皮膚含水率の測定値 (全データ)

<table>
<thead>
<tr>
<th>被験者</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>データ数</td>
<td>695</td>
<td>388</td>
<td>680</td>
<td>575</td>
<td>460</td>
</tr>
<tr>
<td>平均値</td>
<td>32.2</td>
<td>36.9</td>
<td>33.6</td>
<td>30.4</td>
<td>32.3</td>
</tr>
<tr>
<td>標準偏差</td>
<td>1.9</td>
<td>3.0</td>
<td>5.6</td>
<td>3.7</td>
<td>4.2</td>
</tr>
</tbody>
</table>

322
3.2 皮膚含水率の測定値と計算値の比較

皮膚含水率の測定値と計算値（図1のx=0におけるw）を図7に、室内温湿度を図8に示す。計算値は皮膚実質部を基準とした含水率であるが、測定値は皮膚とは別の材料を基準に求められた含水率であるため、絶対の比較は困難と判断し、時系列の傾向を比較する。

まず、年周運動について見ると、2013年9月下旬から10月上旬にかけて上昇し、その後、2014年2月にかけて低下、2014年5月から8月にかけて再度上昇するという測定値の傾向が、計算値にも現れている。図9に2013年秋から冬にかけてのデータを抽出した結果を示す。1日、1週程度の周期を持つ変動の特徴について、一部の被験者については計算により捉えられているが、全ての傾向が捉えられているとは言えない。

計算値に関して、皮膚温度一定と置く場合と、Stolwijkモデルを用いて気温と湿度による皮膚温度の違いを考慮する場合の両方を測定値と比較した。後者は、絶対湿度が同じ場合、湿度が高いほど皮膚含水率が低くなるというモデルであるが、実験結果との相関係数には差が無い（表4）。在室時の居室内温度の変動が小さい（平均23.1℃、標準偏差2.8℃）こと、着衣条件の変動を考慮していないことが影響していると考えられる。
図9 皮膚含水率の測定値と計算値の比較 (10/16-12/5)

表4 皮膚含水率の測定値と計算値の相関係数

<table>
<thead>
<tr>
<th>被験者</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>皮膚温一定</td>
<td>0.31</td>
<td>0.45</td>
<td>0.74</td>
<td>0.74</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>皮膚温変化</td>
<td>0.32</td>
<td>0.44</td>
<td>0.72</td>
<td>0.72</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

4. 考察

皮膚含水率が決まる物理的メカニズムとしては、皮膚角層の相対湿度における水気伝達特性、すなわち、周辺空気と皮膚の相対湿度、皮膚の温度、皮膚含水率の影響と考えられる。また、皮膚温は体内側の要因や個体特性に影響を与えるため、皮膚温の影響を直接的に考えることができない。今回の測定は、皮膚温の相対湿度と周辺環境の相関を示す結果は、物理的メカニズムに基づいた説明と示していると言える。

一方、皮膚含水率を決める体内側のメカニズムの一つとして、状態に応じて角層の厚さや構成が変わる可能性が考えられる（前田1998）。現状ではそれを確認できる測定を行っているが、その変化は、今後の解析モデルで示され、角層の厚さや角層の相関性群の時変性に対応する。

本論では、皮膚含水率の変動傾向に着目して、測定値と計算値を比較したが、皮膚含水率の絶対値や変動傾向は、被験者によって異なる。定量的な予測には、角層の状況や皮膚温における個体差を考慮した検討が必要である。他方、解析モデルに関して、周辺環境の影響を仮定したモデルを用いて、比較的長期間に皮膚含水率変動の傾向を再現する可能性を示したものの、非定常モデルは必要であることを示すものではない。さらなる定量的検討を要する。

5. まとめ

手首部分の皮膚含水率の通年の変動を、複数の青年被験者に対して測定し、その値が水蒸気の相対湿度および相対湿度と比較的高い相関を持つことを示した。また、皮膚角層に対して熱水分同時移動方程式を適用したモデルに瞬時定常の仮定を用いて測定結果の解析を試み、皮膚含水率の変動の傾向を再現する可能性を示した。

謝辞 本研究の一部は、日本学術振興会科学研究費基盤研究(B)（課題番号25289195、研究代表者：高田暁）の助成を受けた。また、本研究の遂行にあたり、神戸大学卒論生小柳奈央さんの協力を得た。記して謝意を表する。

6. 文献

吉田好克、田上啓生ら、1983. 身体各部位における皮膚角層水分量の季節変化とそれに関与する因子について、日皮会誌, 95(5): 491-495.

開開典子, 高田暁, 2013. デスクワーク中の室内温湿度変化に伴う皮膚含水率の実態調査, 第37回人間-生活環境系シンポジウム報告集: 117/120.

＜連絡先＞
連絡先氏名 高田 暁
住所 神戸市灘区六甲台町1-1
所属 神戸大学大学院工学研究科建築学専攻
E-mail アドレス satoruta@kobe-u.ac.jp