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“Fast” algorithms for quantum physics
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Introduction

“Fast” algorithms for classical physics require computational
efforts proportional to NV or Nlog N to evaluate all two-body
interactions in an cnscmble of N particles. in contrast with
the traditional methods which require Crder(N?) computa-
tional eflorts. As a result, large-scale simulations that were
previously out of reach can be carried out with reasonable
computational efforts.?

Also, “fast” algorithms for quantum physics have been devel-
oped in 1990s. These fast algorithms require computational
eflorts proportional to N or N log N, where N stands for the
number of the atoms in the system or the number of the basis
functions, to compute the electronic properties in conirast
with the conventional Order(N®) diagonalization methods.
As a result, microscopic calculations for very large systems
can be carried out with reasonable computational efforts.?™

In this article we give a brief description of two fast algo-
rithms for the Green’s functions and the linear response func-
iions of quantum systems, i.e., the Particle Source Method
and the Projection Method, with their applications to aperi-
odic systems such as amorphous, liquid, and nanostructure
systems. The Particle Source Method®! has been successfully
applied to DC {(w = 0) transport properties of large disor-
dered systems,” and the Projection Method™ has been used
for AC (w # 0) response functions.®) Both methods are based
on the numerical solution of the time-dependent Schrodinger
equation,” use random vectors for calculating the trace and
have advantages in implementing on vector-parallel super-
computers. Since these methods do not rely on the locality of
the wave functions in contrast to many other fast methods,
they have been successfully applied to the phenomena origi-
nating from the global coherency of the wave function such
as the size effects of nanostructures.'®

Particle source method

In many fields of quantum physics, evaluation of the Green’s
functions'®) constitutes the most important and démanding
part of nmumerical treatment. Therefore efficient numerical
algorithms, such as recursive Green’s function methods,'?
quantum Monte Carlo methods,® the Lanczos'® methods,
and Forced Oscillator Method (FOM)*®) have been developed
and applied to various problems. In this section we introduce
another algorithm (the Particle Source Method; PSM) for cal-
culating the Green’s functions that uses numerical solutions of
the time-dependent Schrddinger equation with a source term.
The PSM can be regarded as a quantum version of the FOM,
and is expected to play an important role in computational
physics by complementing the quantum Monte Carlo methods
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and Lanczos methods.

1. Monochromatic particle source  Let us introduce the time-
dependent Schrédinger equation with an oscillating source
term,

i 1gs1) = Hlgst) + e T 0(0), 1)

where the wave function. |¢;t) and an arbitrary source |7)
are N-component complex vectors, the Hamiltonian H is an
N x N Hernmilian matrix, w is the frequency of the source,
and 7 is a small positive imaginary part of the frequency.
Note that this source term grows up exponentially due to
finite 7, which simulates adiabalic switching on of the particle
source. This adiabatic switching on, which has been absent in
FOM,® is essential to calculate accurate Green's functions.

The solution of Eq. (1) with the initial condition |¢; 1 = 0) = 0

becomes!??
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where we have neglected the second term in the parentheses of
Eq. (3). This approximation is justified by using sufficiently
long time 7' satislying the condition

e < §, (6)

where § is the required relative numerical accuracy of the
(reen’s function. Then multiplying e**“ 47T on Bq. (5), we
obtain the Green’s function operated on the ket,

lg; The VDT = Gw + i) 5). (7)

2. Impulse-type particle source  We can also use an impulse-

type particle source,

2 1g5t) = Hlgs i +1)5(0), ®)

for calculating the Green's functions. The solution of Eq. (8)
with the initial condition |¢;t < 0) = 0 becomes

o —iH
l631) = (=i)e™]3), (9)
which can be computed by solving the homogencous cquation

1Sty = Higy ), (10)
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with the initial condition |¢;1 = 0) =
Fourier transformation of Eq. (9),
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gives the Green’s function operated on the ket. Here we have
introduced the imaginary part of the frequency 71 to neglect
the second term in the parentheses of Eq. (13).

The advantage of the impulse-type source over the monochro-
matic source is that its numerical errors and stability are bet-
ter understood,g) and that it can calculate the Green’s func-
tion for many {requencies at once.

3. Glw—1i) So far, we have heen calculating the Green'’s
function whose frequency has a positive imaginary part.
When we need the Green’s function whose frequency has a
negative imaginary part, G(w — in), we should just substitute
t by —t, and 9 by —n in Egs. (1) and (8), then follow the
procedure described in subsections 1. and 2.

4. Product of the green's functions  Since |j) in Egs. (1)
and (8) is an arbitrary ket, we can repeat the calculation
of the Green’s function by using a new source term |j2) =
A1G(wy +171) 7). Then we obtain the product of the Green'’s
functions and operators such as

(i|AnG(wn + 7.'7]7,) S AZG(LL)Q + i?]z)AlG(uh + 7;7]1)A0|j>,(16)

It has been very difficult to compute products of Green’s func-
tions by using traditional Lanczos Method.

5. Solving the Schrédinger equation To solve the time-
dependent Schrédinger Egs. (1) and (8) numerically, we use
the simplest form of the Symmetric Multistep Methods,” i.e.,
the leap frog method,

[t + At) = —2iAtH @ t) + |¢; 1 + AL)
—2At|5)e~ Mg, (17)
where At is the time step. The time step is set as
At = Ol/Em.az, (18)

where Epq. is the absolute value of the extreme eigenvalue,
and a = 0.1 is a dimensionless time step. Sample programs
of the Symmetric Multistep Methods are available from our
web site.

The computational time to calculate G{w + in) is estimated
by the number Np.oq of matrix-vector products in the time
evolution, which is equal to the integration time T' divided by
time step Af,
N _ 1 _ TEm,az _ 1055 Eman:
ed =Nt T T a4 « 7’

(19)

where we used Eq. (6) for the second equality. Note that

Nyroa is independent of the system size N,

6. Random vector

N
12) =Y njéa,
n=1

where {|n)} is the basis set used in the computation and &,
are a set of random variables generated by a subroutine, which
satisfy the statistical relation

<< E;.'é‘ﬂv >> = 571"”'
Here ({ -

A random vector is defined by

(20)

(21)

) stands for the statistical average.

This random vector may be also expressed by the eigenstates

of H,

N

= 1B (22)
n=1

Although we do not know the actual value of {, and |E,),

we can derive the statistical relation of ¢, as follows. Since
Eqs. (20) and (22) are the same vector, we obtain

Z B Yo = Z hé,

m=1

Z G Bm] = stl-

m=1 =1
By multiplying (E,| on Eq. {23} from left and {E,.) on Eq. (24)
from right, ¢, and ¢, are expressed by a unitary transforma-
tion of & and £

(23)

(24)

N
C’u = Z(En !Ogl; (25)
=1
N
Go=) & {IE. (26)
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Then the statistical relation of {, is derived as
({ GuGn ) = ZZ« | En) (Eall) (( €060 )
l'=11=1
N
= > {Eal)(i|Ew)
=1
= (En|E) = bpra. (27)

‘We can easily notice that the random vector contains all eigen-
states of the Hamiltonian with equal probability. Therefore
the random vector, Eq. (20}, represents the system at a very
high temperature (T — o0).

The statistical average of {®|X|®)
({ (@X[®) ) = Z(( CiGn )} {Enl X | En)

Z Cn 4 ’g"z

n#n’

=) (BulX|En) = tr[X]

gives the trace of X

(But|X|Bn)  (28)
(29)
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where we used the statistical relation (27). Note that statisti-
cal errors appear when the averages in Eq. (28) are evaluated
by the Monte Carlo method.

7. Applications By combining the techniques described in
the preceeding subsections, we can calculate various physical
quantities, such as the density of states (DOS) p(w), the DC
conductivily oz, and the Hall conductivity oqy,

plw) = %tr ImG(w +in))

Oow = j—?/tr [ImG(Es + ))jeImG(Es + in)jz]]

2B Ry .
oay = —ztr[lm {joG(Ey — in)jy G(Ey — in)
x jzG(Ey —in)jyG(Es +in)}].

Figure 1 shows the density of states of silicon crystal con-
sisting of 2'® Si atoms in a cubic supercell of 16 unit cells.
Each unit cell is divided into 8* cubic meshes. The energy
resolution is n = 0.05(eV).. Three random vectors are used.

Figure 2 compares the DOS of amorphous Fe calculated with
PSM and with FOM.® Tanaka et al.'” also calculated the

DOS ( 1/(eV- atom) )
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Fig. 1. The density of states of silicon crystal consisting of 215 i
atoms in a cubic supercell of 163 unit cells. Each unit cell is divided
into 8% cubic meshes. The energy resolution is = 0.05(eV).
Three random vectors are used.
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Fig. 2. Comparison of the calculated total DOS for amorphous Fe by
using the PSM and the FOM.
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Hall coeflicients by using PSM to suggest that the p-d orbital
mixture might be the origin of the positive Hall coeflicients
of liquid Fe.

Projection method for linear-response

In this section we introduce the Projection Method for linear-
response function. First we review a simple derivation of the
linear-response function of one-electron system. Second we
introduce the projected random vector, which simulates the
ground states of a non-interacting many-electron system by a
single one-particle wave function. Then, combining these two
concepts, we derive a fast algorithm for the linear-response
function of a non-interacting many-electron system.

1. One-electron system  First, we review the linear-response
of a system consisting of a single electron described by the
Hamiltonian H. When an impulse of perturbation Aé(t) is
applied to this system, the time evolution of the wave function
is described by the Schrédinger equation

. d

i 165) = {H + A5(5)} 451) (30)
Note that the impulse Ad§(t) contains all {frequency compo-
nents Ae™™*!, Assuming that the system was in the initial

state |¢(?) before the perturbation, the wave function for
t > 0 becomes

|18 = [6(752) + |36 1), (31)
where
6@ 1) = () (32)
665 t) = (—i)e "t A[¢!). (33)
The linear response of an observable B is calculated as
SB(t) = (¢;1|Ble;t) ~ 2 Re(¢”;t|B|dg; ) (34)
=2 Im(¢(¥ et Be 7 41g(?) (35)

and the Fourier transformation of §B(t) gives the linear re-
sponse to the perturbation Ae™**

T
xBaA(w +in) = / dt et rImts By, (36)

0

where the imaginary part of frequency 7 is introduced to limit
the integration time to a finite value T' = — In 6 /5 with § being
the relative numerical accuracy of Eq. (36).

2. Projected random vector  Next, we try to simulate the
Fermi degenerated ground state of a non-interacting many-
electron system by a single one-particle wave function, and use
this wave function to calculate the linear-response function of
the system. We define a projected random vector by applying
the projection operator §(E; — H) to the random vector,
|®k,) = 0(E; — H)|®). (37)

The projected random vector may be also expressed by the
basis set {|En)},

25} = Y |Ea)u,

Ey, SEI

(38)



where E; is the Fermi energy. Then the statistical average of
(P, |X|®Eg,) gives the sum of contributions from each occu-
pied states

({ (@5, |X]25,) ) = Y ((Gién)) (EalX|En)
En<Ey
2 (GG (BuXIE), (29)
By, B, <Ey
n#n'

= E (»En
En<E;

where we used the statistical relation Eq. (27). Note that
statistical errors appear when the averages in Eq. (39) are
evaluated by the Monte Carlo method.

X|En), (40)

3. Many-electron system By introducing the projected ran-
dom vector, Eq. (88), into [¢!?) in Eq. (35) and then into
Eg. (36), we obtain our final result, i.c., the linear response
of a non-interacting many-electron system,

T
xBA(w +in) = << / dt e+"<“’*"”>"5B(t)>>,
0

where 63(t) represents the sum of the response from each
electron below the Fermi energy, which is defined by

(41)

§B(1) = 2 Im(®p, eV Be M 0(H — E;)A|®E,).  (42)

In Eq. (42), another projection operator 8(H — Ey) has been
introduced to ensure that the excited states should be higher
than the Fermi energy.

4. Computational procedure  For calculating Egs. (41) and
(42), we start with one realization of the random vector,
Eg. (20), and calculate two wave functions,

|d>(°>;t) - 6_”ﬂ|q’Ef),
|6¢;t) = e *7*(H — Ey)Al@E,),

(43)
(44)

where the time evolution is calculated by the leap frog
method® and the projection operators are calculated by the
Chebyshev polynomial expansion.7’8) At each time step, the
response, Eq. (42), and its Fourier transformation, Eq. (41),
are evaluated. Since the leap frog method and the Chebyshev
polynomial expansion consist of the matrix-vector operation
H|¢) whose computational efforts are of Order(N) for sparse
Hamiltonians, the total computational eflort also becomes of
Order(N).

An outstanding advantage of the Projection Method is that
it can calculate the linear-response at many frequencies with
the CPU time for a single frequency because the most time-
consuming calculation, Eq. (42), is common to all frequencies.

Photo-absorption of Si nanocrystallites

Recently the size effects of nanocrystallites on their opti-
cal properties attract increasing interest of both theorists
and experimentalists."’10’18'27) In this section we present the
imaginary part of dielectric function e(w) calculated with the
Projection method for very large silicon nanocrystallites of

size L = 3-8(nm). Nanocrystallites larger than 8{nm) show
photo-absorption spectra very similar to bulk spectra, and
nanocrystallites smaller than 3(nm) show complicated spec-
tra characteristic to small clusters. In the intermediate re-
gion between 8(nm) and 3(nm), peaks in the photo-absorption
spectra shift to higher energy and become broader and lower
as the crystallite size decreases. In order to explain this size
dependence we propose a model based on the minimum mo-
mentum iransfer qmin = 7/L, and show that the peak shift
is proportional to 1/L% .

1. Numerical results  In the case of the dielectric [unction
€8,a(w) = 1+ 4mxga (w) with o, 8 = 2,9, 2z, the perturbation
and the response are the external electric field and the polar-
ization, A = z, and B = —zp /), respectively, where £} is the
volume of the system. In practice we used the formula with
the position operators, 2., replaced by the current operators,
Fa, by using partial integra,tion,s)

€ga(w + i) = 1+ 4dmxga(w + in) (45)

: P Gl 22 0% 46

Xpa(w + 1) = i S TEmE (1) (46)
K1) = :Q?Ln(qupwwﬁ

x e O(H — Ey)jal®r,) (47)

Figure 3 shows the dielectric function with energy resolution
7 = 0.05(eV) of silicon crystal consisting of 2'° Si atoms in
a cubic supercell of 163 unit cells. Each unit cell is divided
into 8% cubic meshes. One random vector is used. We used
the empirical local pseudopotential in reference.?® The re-
sult agrees with experimental results and other theoretical
calculations.?®

Figure 4 shows imaginary part of dielectric function e(w) for
(100) %(010) x(001) cubic hydrogenated Si nanocrystallites
with various crystal sizes, where each unit cell is divided into
8% cubic meshes, the energy resolution is n = 0.05(eV), the
vacuum region of width 2ap (ag = 5.434 is the lattice con-
stant of Si) is inserted between the nanocrystallite and the
boundary of the supercell, and the number of random vectors
{or statistical average is from 4 to 64 depending on the sys-
tem size. The empirical local pseudopotential in reference?
is used.

Figure 5 shows energy shifts of the main peak in optical spec-
tra as a function of the crystal size L/ao.

2. Effective mass approximation  Let us consider the photo-
absorption due to the direct transition between two bands
E;(k) and E;(k). The absorption energy is defined by the
difference of the two band energies wi;(k) = Ej(k) — Ei(k).
The absorption spectra of crystals have peaks at the critical
points, kep, where the two bands become parallel, VE;(kep) =
VEj(ch)~28)

In a crystallite of size L, the wave number is not a good
quantum number any more because it fluctuates by qmin =
7 /L according to the uncertainty relation between position
and momentum. Therefore the peak energy will shift to
3
Wij (kcp + qmin) = Wij (kcp) + Z Qn (Qm'm)i,

n=1

(48)
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Fig. 3. (a) Reexx(w) of 5|l|con crystal consisting of 215 Si atoms in a
cubic supercell of 162 unit cells. Each unit cell is divided into 83
cubic meshes. The energy resolution is = 0.05 (eV). We used
the empirical local pseudopotential in reference.?) (b) Imexx(w) of
silicon crystal consisting of 215 Si atoms in a cubic supercell of
16% unit cells. Each unit cell is divided into 8% cubic meshes. The
energy resolution is n = 0.05(eV). We used the empirical local
pseudopotential in reference.4)

imaginary part of diefectric function
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Fig. 4. Imaginary part of dielectric function e(w) for (100) x (010) X
(001) cubic hydrogenated Si nanocrystallites with various crystal
sizes.
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Fig. 5. Energy shifts of the main peak in optical spectra as a function
of the crystal size L/ag.

where an are defined by using effective mass at k = kep,

1 62(4)-,;_7'(1()

2  On? (49)

Op = .
k=kep

Therefore the peak shift is proportional to ¢2,;, o< 1/L*. The
dashed line in Fig. 5 shows the peak energy estimated by
Eq. (48).

3. Si amorphous-nanocrystallite system  According to the
recent numerical calculations'® and experimental meas-
urement; ") Si nanocrystallite embedded in amorphous silicon
atoms (a-nc system) shows the size effects in optical absorp-
tion spectra. In this case the energy shift may be interpreted
in terms of momentum fluctuation caused by the scattering
of electron in the amorphous part of the system. Although
the mean potential is almost the same for amorphous and
nanocrystallite region

AV = (k|AVK) =é /drAV(r) ~ 0,
electrons are scattered in the amorphous region by the devi-
ation from the crystal potential

AV(r) = Vamorphous(T) — Verystal () # 0,

and cause the momentum fluctuation. When the amorphous
region is thin enough, the wave function {k;a — ne) of a-nc
system may be expanded by the unperturbed crystal wave
functions in the same band with wave number near k

o+ 3 ey KAV

|k; a~nc) =
Z B0~ 507

+...,

and this fluctuation causes the shift of peak energy in the
same way as in isolated nanocrystallites.

4. Size effects of plasmon frequency An electron passing
through a film of nanocrystallites may excite plasmons with
probability proportional to Im e *(w). The energy loss of
the electron will exhibit characteristic quantized plasmon loss
when the dielectric function pass through the zero.?®
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Fig. 6. The imaginary part of inverse dielectric function, Im e—l(w)
of Si nanocrystallites of various sizes.

Figure 6 shows the imaginary part of inverse dielectric func-
tion, Im e"l(w), of Si nanocrystallites of various sizes. The
fine structures in the spectra are mainly caused by the sta-
tistical errors due to a small number of randomvectors. The
size effects of plasmon energy is much larger than that of
photo-absorption spectra, and may be easily observed by the
electron energy loss spectroscopy.

5. Summary  In this section we studied the size effects of
Si nanocrystallites on their photo-absorption spectra by using
the Projection Method. The results show that the peak shift
of nanocrystallites larger than 3(nm) can be explained by the
minimum momentum transfer model. This knowledge would
give us a way to measure size of nanocrystallites by measuring
photo-absorption spectra.?®

o(w) in Anderson model

The Anderson Hamiltonian can be written as

H=) R)R[-V Y [R)R+IR

R R,sR

(50)

where ¢R is the site energy distributed uniformly in the range
[-(W/2)V,+(W/2)V], and SR are the displacement vectors
to nearest neighbors on a simple cubic lattice.

The frequency dependent conductivity for a non-interacting
electron gas with spin is calculated by the Projection Method®

o(w+in) = /T dt e—”‘wmt) (51)
o i(w + i) .
]
K(t) = _—;;Im(@EAeHHtjm
x e "O(H - Ef)ja|Pr,) (52)

where j, and 0(X ) are the current operator and the projection
operator, respectively. Here (( - >>ER"I’ stands for the statis-
tical average over random site energies and random vectors.
An advantage of the Projection Method with the Anderson
Hamiltonian is that the statistical averaging over random site

energies and over random vectors can he computed simulta-
neously because they are statistically independent.

Figures 7, 8, and 9 shows o(®) as a [unction of the normal-
ized frequency @ = p(0)w for a cube of size L = 14,30, 256,
respectively. The disorder is set to W/V = 14.9, which is
supposed to be close to the Anderson transition point.2973%)
The conductivity o (@) of each system shows the theoretically
predicted frequency dependence®” &'% in a wide frequency
range. The calculated conductivity deviates from the theoret-
ical behavior at high and low frequencies. The deviation at
high [requency originates from finite band width of the model
Hamiltonian. The deviation at low {requency originates from
the fAnite system size or the finite imaginary part of the fre-
quency, 7.

The detailed study of the critical disorder and the exponent
34)

will be published elsewhere.
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Fig. 7. Dynamical conductivity o(@) as a function of the normalized
frequency © for a cube of size L = 14 with the disorder W/V =
14.9.
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Fig. 8. Dynamical conductivity o(@) as a function of the normalized
frequency & for a cube of size L = 30 with the disorder W/V =
14.0.
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Fig. 9. Dynamical conductivity o(®) as a function of the normalized
frequency @ for a cube of size L = 256 with the disorder W/V =
14.9.

Anomalous quantum dynamics for eigenvalues

As the advancement of high performance computers, the
importance of numerical solution of the time-dependent
Schrodinger equation has been increasing. However, a
straightforward application of conventional algorithms in li-
brary routines such as Runge-Kutta method simply fails be-
cause of their numerical instabilities. Therefore many authors
have been trying to find eflicient stable algorithms for the
time-dependent Schrédinger equation. Among them, we pro-
posed a class of conditionally stable algorithms named as the
Symmetric Mullistep Methods, and studied their numerical
errors and stability in detail.®

In the preceding sections we solved the time-dependent
Schrodinger equation by using the leap frog method, the sim-
plest form of the Symmetric Multistep Methods, within its
stability condition a = |EmecAt] < 1. If we use the leap
frog method with o > 1, the numerical solution diverges ex-
ponentially. Although this diverging solution does not cor-
respond to any real physical process and has been regarded
as an obstacle to cope with, we have found a way to exploit
this anomalous quantum dynamics to extract eigenvalues and
eigenvectors efficiently from large-scale Hermite matrices.3®)

This method can be regarded as a quantum version of the
Okamoto-Maris method to compute eigenvalues and eigen-
vectors by using diverging solutions of the classical equations
of motion of harmonic osccilators.3®)

Summary

We have developed two types of Order(N) algorithms for the
Green's functions and the linear-response functions, that is,
the Particle Source Method and the Projection Method. These
algorithms make it possible to calculate the optical and trans-
port properties of various large systems that have been im-
possible by conventional schemes. In this article, we have
briefly described the basic idea of these two methods by il-
lustrating their effectiveness with numerical applications to
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quantum nanostructures and Anderson models.
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