エンタングルメントで見る時空の幾何学構造と テンソル積波動関数

仙台高等専門学校 情報電子システム工学専攻 松枝 宏明 ¹²

(2011年5月16日受理)

近年,「エンタングルメント(量子もつれ)」の概念が,量子情報科学だけではなく,物 性理論・超弦理論・量子重力理論をはじめとした幅広い研究領域において,非常に重要な ものとなっています.この状況を俯瞰的に眺めると,「系の持つエントロピーを余剰次元 がうまく吸収してくれる」ということなのですが,「エントロピー」に「余剰次元」って何 だかいきなり怪しい響きですね.本稿ではこの物理的イメージと計算の詳細をできるだけ 丁寧に御紹介したいと思っています.この概念を理解することで,「エンタングルメント・ エントロピー」を媒介に,「密度行列繰り込み群」「面積則」「行列積・テンソル積変分法」 「エンタングルメント繰り込み群」「双対性」「ホログラフィー原理」「AdS/CFT 対応」「D ブレーン」「情報圧縮の上限」といった各研究領域のホットなキーワードが,実は非常に 密接に結びついていることをご理解いただけると思います.このことは我々の自然認識に 関わる問題であり,エネルギー階層や対象に依らない普遍性や双対性が存在するという意 味で非常に興味深いことです.

本稿の全体の流れは以下の通りです:先ずは,座標変換で保存すべき情報量の意味,双 対性やホログラフィー原理など,この先で基本となる重要な概念を整理します.それらの 性質を数学的に取り扱うために「エンタングルメント・エントロピー」が導入されます. エンタングルメント・エントロピーを特徴づけるのは「面積則」「量子異常」「量子次元」 です.「面積則」からは「テンソル積型変分理論」が派生し,逆にテンソル積変分理論を通 して面積則とその破れに関する知見が得られます.また「量子異常」は,一般座標変換と 量子力学の経路積分表示の視点に立てば「曲がった時空」の特徴ですが,一般に時空の歪 みが認識できるということは,より高次元に内包された部分空間の性質を見ようとしてい ることを暗に仮定しています.この「余剰次元」は面積則と非常に深いつながりがあって, 余剰次元方向への歪みの強さがエントロピーの大きさに対応します.変分理論のテンソル 次元もこの余剰次元に対応するものです.またこの時空のトポロジカルな構造は「量子次 元」を通じて見ることができます.そして以上の結果としての「AdS/CFT 対応」,その 応用としての「エンタングルメント繰り込み群」「量子画像処理」がより深いレベルで理 解できるという全体構造になっています.

¹E-mail: matsueda@sendai-nct.ac.jp

²本稿は、編集部の方から特にお願いして執筆していただいた記事である.

目 次

1	はし	ジめに:余剰次元と情報量の保存	386
2	双求 2.1 2.2 2.3	対性・ホログラフィーの具体的なモデル(AdS/CFT 対応を中心として) 量子モンテカルロ法の量子/古典対応 AdS/CFT 対応 トポロジカル絶縁体のバルク/エッジ対応	391 . 391 . 392 . 397
3	12 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	・タングルメント・エントロピーと面積則 歴史的経緯:Bekenstein-Hawking の公式 エンタングルメント・エントロピー 面積則(Area Law, Entropic Boundary Law) 面積則に対する質量項の依存性について 一次元臨界系のエンタングルメント・エントロピーの計算 エンタングルメント・エントロピーへの対数補正についての追記 トポロジカル秩序とエンタングルメント・エントロピー Particle partitioning entanglement entropy	 398 398 400 402 403 406 417 421 425
4	行歹 4.1 4.2 4.3 4.4 4.5	J積状態(Matrix Product State, MPS) 行列積状態 MPS の構成法の具体例:スピン一重項状態 Projected Entangled-Pair State (PEPS) MPS の繰り込み変換と面積則の関係 MPS の数値的変分最適化	426 . 426 . 428 . 430 . 431 . 432
5	MF 5.1 5.2 5.3	PS の高次元化:テンソル積状態(Tensor Product State, TPS) 面積則を満たすような波動関数を探す	440 . 440 . 442 . 443
6	 ★ → 6.1 6.2 6.3 6.4 6.5 	P 多体系波動関数の多彩なエンタングルメント構造 VBS 状態	444 446 447 451 451

7	階層	的テンソルネットワークと AdS 時空	452
	7.1	Tree Tensor Network (TTN) による階層的テンソルネットワークの構成:	
		実空間繰り込みの視点回復・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	452
	7.2	disentangular によるエンタングルメントの制御:MERA	455
	7.3	テンソルの階層構造に隠れた AdS 計量と面積則	456
	7.4	DMRG 屋さんは「メラメラ」しましょう	457
8	実は	画像処理が凄い!	458
	8.1	特異値分解による定式化	458
	8.2	圧縮画像とエンタングルメント・エントロピー	463
	8.3	AdS/CFT 対応によるエンタングルメント・エントロピーのホログラフィー	
		的解釈	464
	8.4	中心電荷と双対性	465
	8.5	Zamolodchikov の c-定理, Boundary RG flow, ホログラフィック繰り込み群	465 [±]
	8.6	高効率画像処理に関する知見	466
	8.7	Dirichlet brane の力学と画像処理	467
9	気に	なる問題あれこれ	468
10	最後	にちょっとだけ哲学的な自問自答	471
11	まと	Ø	472

1 はじめに:余剰次元と情報量の保存

本稿では「仮想的な次元や自由度(以降では「余剰次元 (extra dimension)」と呼び ます)を導入して、その次元に物理的意味を持たせることにより、量子多体問題を見通し よく解決する」ということを改めて考えてみようと思うのです1-3. これは物性論や素粒 子論などの理論物理学に限らず、数学の諸分野も含めて、広く知られた問題解決の処方箋 であることは言うまでもないでしょう。自由度を増やすということは、一般には問題を複 雑にしてしまったり解の一意性が保障されなくなったりする危険性を排除しきれないので すが,一方では問題で要求される対称性や保存法則を満たすようにその自由度をうまく活 用できるという大きな利点もあります。どのような場合にどのような理由で問題の簡単化 という都合のよいことが起こるのでしょうか?またそれを特徴づける保存量のようなもの が存在するのでしょうか?「物理的意味」という部分を「物理的実在」と言ってしまって よいのはどのような場合なのでしょうか?それらは状況によって様々で、統一感に論じる ことは難しいと思われるかもしれません、しかしながら近年、「『エンタングルメント・ エントロピー (entanglement entropy)」と呼ばれる情報量が、余剰次元の導入に伴っ て見かけを変えつつも、どのような形で保存するのか?」ということを考えると、現象の 背後にある物理を含めて問題の全体像を把握するのに見通しよい場合が意外に多いという ことが分かってきました.一方、力学の基本である系の対称性(時空の一様性や等方性な ど)とエネルギー・運動量保存則、相対論の一般座標変換、量子論における波と粒子の二 重性など、現代物理学で鍵となる物理法則を思いつくままに並べてみても、「情報量」と いっただけの抽象的なものがどれほど重要なのかはあまり明確ではありませんね。また 次元の異なる系の間の変換則ということも基礎理論としてはあまり一般的でありません. そうは言っても、皆さん普段から座標変換に対する情報量の保存という点に注意を払って いることは確かなのです。例えば、量子論における波と粒子の二重性は Fourier 変換で特 徴づけられますが,系を有限の格子点で近似した場合には,粒子が取り得る波数も格子点 の数に応じて離散化されます。ハミルトニアンの数値対角化では日常的に用いられる方法 ですね. また相対論のローレンツ変換では、四次元 Minkowski 時空での座標変換不変性 を考えますが、物理的背景はともかく純粋に情報量という観点からは、時間軸と空間軸が 光速一定であれば「距離」という同じ属性・単位でかつ双方の軸が同じだけ稠密に実数が 分布しているという事実が変換を可能としていると言っていいでしょう.

一見して異なる見方に実は関係性があることは「双対性(Duality)或いは相補性(Complementarity)」というキーワードでよく呼ばれています.量子論における波と粒子の相 補性や Dirac の電磁双対性, Kramers-Wannier 双対性におけるボンドとサイトの変換な どはその典型ですね.また特に,この双対性が時空の次元が異なる理論間の対応である場 合に「ホログラフィー原理(Holographic principle)」と呼ぶことがあります.このキー ワードは勿論光学におけるホログラフィーのアナロジーから来ています.光学では,三次

- 386 -

元的物体をコヒーレント光で照明し、その透過光とバックグラウンド光の干渉により作ら れる回折像を二次元の写真乾板に記録します. ここからバックグラウンド光のみと適当な 結像系で元の情報を再生することができます.ここで見られる「空間一次元分の情報量| の「位相情報」への変換は、Euler の式 $e^{x+iy} = e^x(\cos y + i \sin y) = e^x(\cos \omega t + i \sin \omega t)$ をイメージするといいでしょう ($\omega = y/t$, t は定数). この場合,指数関数は複素平面 上の点 z = x + iy を一次元空間の点 x と周波数 ω に変換する「写像」です. これも或 る意味 Lorentz 変換の場合と同じような情報量の変換ですね. この揺らぎが「量子揺ら ぎ」と見なせる場合には,空間 d 次元量子系と (d + 1) 次元古典系の対応となり,これ は「量子/古典対応」と呼ばれるホログラフィーとなります.量子系の固有振動数を全て 集めてくると固有関数は完全系を張り,それが空間一次元分の情報量に相当するというこ とです. 系の持つ情報量の計算という観点からは、この対応は極めて重要です. 何故かと いうと、一般に量子多体系のもつ情報量を厳密に知るには、固有スペクトルをくまなく 調べ尽くす必要がありますが、これは実効的に不可能であるからです。たとえ空間次元が 一つ上がっても、古典的なアプローチがあるということは非常に大きな意味を持つので す. 但し, 量子系のように情報が離散的である場合は少し注意が必要です. というのも, 対応する古典時空のゲージや計量はどうなってしまうのかよく分からないからです。非常 に楽観的に考えると、古典側に長さの適切なカットオフを導入して格子にしてしまえば、 一対一対応する情報量にマップすることは可能であろうと期待されます.物性論の強力な 武器である量子モンテカルロ法(Quantum Monte Carlo Simulation, QMC)はまさにこ の「量子/古典対応」に基づいているのですが、余剰次元として新たに「虚時間軸」を加 えて分配関数を局所 Boltzmann 因子に鈴木-Trotter 分解すると,空間次元や相互作用に よっては所謂「負符号問題」が出てしまいます.通常は「幾何学的フラストレーション系 では量子モンテカルロは使いにくい」という方向に逃げてしまいがちなのですが、虚時間 軸の単純な離散化(チェッカーボード分割では超立方格子を作る)が常に整合性が取れる とは限らない(たとえ形式的に分解出来たとしても)ということを示唆しているように思 います.また QMC の例とは異なり余剰次元が数学的な利便性のために導入された抽象 的パラメータで、時空と直接の相関を持ちそうにないような場合、その自由度が対応する 量子系のどのような自由度に転化されるのかということは極めて不明確です。これは経路 積分で良く用いられる Hubbard-Stratonovic 変換のような余剰次元(今の場合には時間 に依存する有効場)の導入法に見られることですが、多体相互作用を二次形式と有効場の 積に分解する方法は一意的ではありません. 高温超伝導の t-J model を例にすると、Cu d 電子の局在スピン間に働く超交換相互作用項の分解は、キャリア濃度や温度によってべ ターな分解の仕方が変わってくることはよく知られています。統計力学的には自由エネル ギーが最小になるような有効場がいいのだと思えばいいわけですが、今思い返すと、系が 持つべき情報量の視点からの議論は過去になかったように思います。以上のことから、特 に量子系の場合に、実際に解析の対象となるホログラフィー的に繋がる古典時空が、どの

ような条件を備えていなければならないか検討する必要がありそうです.

最初の方で相対論を引き合いに出したのは,古典時空における「時空構造の歪み」が実 は「エントロピーの溜まり場」であって、量子系の励起モードの数とも対応することを早 い段階で述べておきたかったためです。情報量の幾何学的見方を端的に示していますね。 即ち、ホログラフィーを注意深く取り扱うためには、量子系に対応する古典時空は適切 な曲率を持つべきで、時空の曲率に具体的にどれぐらいの情報量が詰まっているかとい うことを気にする必要が出てくるということなのです。多様体上の量子力学では、系のス ペクトルが時空構造に強く依存することはよく知られており,「曲率」と「励起モードの 数」は明らかに対応する概念です.余剰次元や時空の曲率を入れて理論の見通しをよくす るということは、非相対論的問題においても、単なる数学的技巧以上の豊富な物理的構造 を内包しているということなのです. 幾何学的物理観の有用性は近年物性論でも益々盛ん で,「Berry 位相の物理」「強相関電子系に対するゲージ場理論」「トポロジカル物質(量子 ホール系やグラフェンなど)」のような微分幾何学的側面・位相幾何学的側面が非常によ く研究されています、しかしながら、素粒子論と違って通常の物性論では正面を切って一 般相対論を取り扱わないので,幾何学的見方のバランスはやや弱いという印象は否めませ ん(勿論それが全てというわけではありません).その点,エントロピーの議論はそのバ ランスが重要であり、非常にユニークな存在であるということが後々分かってきます.

ここまでの議論ではどのような物体の運動を考えるかということを顕に指定していな かったのですが、物体の力学を考え始めると「背景時空の曲率を導入すると物理が局所 的な量で表わせる」という事例が散見されます。しかも身近な物性においてもそれが見ら れます、この経験則は、本稿の主題の一つであるテンソル積変分に欠くことのできない要 素です.従って直観が湧くように,この局所性の問題を理論ではなくて現実の物質に側し て考えましょう. 典型的な対象はグラフェンの物理です 4,5. グラフェンはベンゼン環が 平面上に連なった二次元シートであり、炭素原子が蜂の巣格子をなします.局所的にはべ ンゼン環が安定構造になることが期待されるのですが、結晶学的には Bravais 格子では ありませんので、群論的にはバルクの安定構造ではありません、グラフェンが驚きなの は、低次元系の長波長揺らぎに対する不安定性が一般にあるのにも関わらず、十分マクロ なスケールで純2次元的であるということです。ここで面白いのは、グラフェンのシート は完全な平面ではなく、「ripple 構造」と呼ばれる面直方向にうねりの自由度を持ちます (ripple は「さざ波」の意味). この自由度が熱力学的エントロピーを吸収してくれるこ とがポイントであると考えられています。この現象は非常に示唆に富んでいると思うので す.即ち,「二次元において局所的には安定なベンゼン環構造」を作って,「無理やり」バ ルク二次元を張って蜂の巣格子を作ろうとすると通常は不安定であるものの,そこで発生 するフラストレーションを「余剰次元方向に」うまく逃がしているということです.本稿 の技術上のポイントがここに集約されているように思うのですが、「見かけ上、局所近似 のような理論(本稿では変分波動関数)を構成して、その代わりに局所量に内部自由度と

- 388 -

いう余剰次元的自由度を持たせると(例えば平均場のスカラー量をテンソルに「格上げ」 する),そこに量子揺らぎの効果を押し込めることができる」ということが期待される命 題です.基盤への結晶成長でも似たようなことを考えることが出来そうですね,但し,こ こでは電子系の相互作用を全く考えていません.結晶構造の安定性のみを議論の対象と していることにご注意下さい.余剰次元方向の揺らぎは「さざ波」ですので,これが「大 波」になったら上記の描像は破綻してしまうでしょう.グラフェン・シートに大きな波が 起こるようでは,そもそも蜂の巣格子が不安定であることを意味しているでしょう.これ らは自然に今の見かたの限界,或いは議論の出発点として採用してよい局所構造が何かと いうことを示しています.今の場合は余剰次元は実際に物理的に意味のある空間次元なの ですが,これが数学的な利便性のために導入された抽象的な自由度であっても成り立つ見 方かどうかということが後の議論でポイントとなるでしょう.

物性物理で見られる上記の視点と比較すると、曲がった時空の物理を駆使する素粒子物 理学、特に弦理論に関わる基礎物理や宇宙論の発展における余剰次元の理解は、もっとド ラスティックで驚くべきものがあります. 我々の住む時空が時間 1 次元+空間 3 次元で あるということは、太古の昔から全く疑いなく受け入れられてきた先験事項だと想像し ますが、時空というものはどうもそのようではないらしいという意見が専門家の中では あたかも自然になっているかのように感じられます. 弦理論の 26 次元時空や超弦理論の 10 次元時空という言葉は皆さんも耳にされているのではないでしょうか?科学系の書籍 を買いに行くと、一般の文筆家ではなく第一線の物理学者達がこぞって啓蒙書を出版する 傾向が非常に増してきたように見えます。このような問題意識は、一般相対論と電磁気学 の統一の初期の試みである Kaluza-Klein(1919-1921)の 5 次元多様体模型から見られる ものですが、弦理論の理解が進むほどに時空に対する問いかけが増しているようです。弦 理論の場合には、時空の計量を含んだ古典的作用積分から出発して、弦の座標とその正準 運動量を量子化して,正しい Lorentz ベクトルとしての変換性を示すことを要請すると, |空間次元は 26 でなければならないという結論が自然に得られます。(現実の物性を研究 のメインフィールドにしている自分には、未だに観測されていない次元の存在を主張する 勇気はとてもないのですが…).ちなみにこの次元は臨界次元(critical dimension)と呼 ばれます.理論に要求される「対称性」や「保存則」を満たすような自由度を余分な「空 間自由度」から借りてくるわけです.時空が物質に対する単なる4次元の入れ物である と考えると、このような高次元時空の存在は全くナンセンスなものですが、時空とは一般 相対論に従って計量自体が大胆に変化する非常にダイナミカルな存在であることを一度認 めると、時空ですら先験的に存在するものではなく、物質の伝搬によって知覚されるもの であるということのようなのです.目に見えない余剰次元がどのようにコンパクト化され ているか、出発点として時空概念すら含まない模型(行列模型やスピン・ネットワークな ど)が存在するかということが真剣に検討されています.

このように幾つかのフィールドに見られる余剰次元の意味合いを検討していくと、程度

の違いこそあれ共通項があって非常に面白いですね.人間の自然認識は,これを精密科学 として見た場合,現状で我々が持っている数学的手段の限界と少なからずリンクしていま す.従って,ある分野で発展された方法を他分野に広く応用できるというのは強みでしょ う.他方,現状の認識が適切なのか否か,またそれを超える深い物理が隠れているのか, 問い始めると非常に難しい問題でもあります.そのような色々な視点を念頭に置いて,幾 何学的観点からエントロピーの問題を捉えてみることにしましょう.

-390-

2 双対性・ホログラフィーの具体的なモデル(AdS/CFT 対応を中心として)

前節では本稿全体を通しての思想的な側面をだいぶ強調しましたので、ここからは双 対性やホログラフィーの数学的背景を少し詳しく見て行きましょう. 前節の議論を数学的 に明らかに表わしている例や以降の節で頻繁に用いる例を挙げておきたいと思います。と りわけ、以降の節で中心的な役割を果たす AdS/CFT 対応を中心に述べたいと思います. ここで重要なポイントの一つは、互いに相補的な空間では結合定数の大きさの強弱が入れ 替わる場合があるということです.即ち,強結合で非摂動的な側面が強く取り扱いの難し い量子系の問題を、双対変換によって弱結合の古典的問題にマップすることができる場合 があるのです。もうひとつ重要なポイントは、光学のホログラフィーや量子モンテカルロ 法で明らかなように、d次元量子系は (d+1)次元古典系の或る「境界(boundary)」に 定義されていることが多いことです.従って、ホログラフィーは「バルク/境界対応」に なることが多いです.境界に量子系が位置しているということは、古典側からアプローチ した場合に、一つの空間軸方向に対して或る適当な極限を取るということになります。そ の極限操作が量子系の対称性をうまく引き出すかということに数学的なポイントがある ように思います.これらの大きく分けて二つの問題には、古典時空の歪みと量子系の対称 性に強い関連があるという問題が共通して隠れています。これは古典時空における曲率の ような幾何学量とその境界における励起モード数のような代数的量を繋ぐ関係で、エンタ ングルメント・エントロピーの大雑把な値と多様な見方を与える上で非常に重要な性質で す. 一般的な空間の構造を決めるという視点に立てば、曲率のような微分幾何学的量だけ でなく、空間の計量を導入する以前の問題としてトポロジカルな不変量を扱うことが出来 るはずです.この視点に立ってのバルク境界対応を議論することも可能で、これもエント ロピーが備える性質であることが分かっています.

バルクと境界の間に成り立つ対応関係は、複素関数論における Cauchy の積分公式や ベクトル解析における Stokes の定理に始まって、Gauss-Bonnet の定理 や Atiyah-Singer の指数定理までつながる現代数学の非常に壮麗な分野でもあります.

2.1 量子モンテカルロ法の量子/古典対応

量子モンテカルロ法では,短距離相互作用している *d* 次元量子系を,対応する *d*+1 次 元古典系にマッピングします.このためには,分配関数 *Z* を鈴木-Trotter 分解して

$$Z = Tr \exp\left\{-\beta \sum_{i=1}^{q} H_i\right\} = \lim_{n \to \infty} Tr\left\{\prod_{i=1}^{q} \rho_i\right\}^n$$
(1)

と変換します. 但し局所的な分配関数を $\rho_i = \exp(-\beta H_j/n)$ としました. 鈴木-Trotter 分 解によって温度が実効的に $\beta_{\text{eff}} = \beta/n$ と上がっていることが分かりますね. これにより

系の乱雑さが増すので、相互作用の効果は実効的に弱められます。空間次元の異なる双対 空間への変換において結合定数の強弱が入れ替わるということの例となっています。ここ で局所的な完全系を挟んで分解すると $(\alpha_{n+1} = \alpha_1)$

$$Z = \lim_{n \to \infty} \sum_{\{\alpha_j\}} \langle \alpha_j | \prod_{i=1}^q \rho_i | \alpha_{j+1} \rangle$$
(2)

$$= \lim_{n \to \infty} \sum_{\{\alpha_j\}} \langle \alpha_j | \rho_1 | \alpha_j^{(1)} \rangle \langle \alpha_j^{(1)} | \rho_2 | \alpha_j^{(2)} \rangle \cdots \langle \alpha_j^{(q-1)} | \rho_q | \alpha_{j+1} \rangle$$
(3)

となります. 従って, 各期待値は単なる数ですから局所的な古典系になっていますが, その 代わりに $\alpha_1, \alpha_2, ..., \alpha_n \ge \alpha_j^{(1)}, \alpha_j^{(2)}, ..., \alpha_j^{(q-1)}$ の2組の完全系を導入したので, $q \to \infty$ 及 $Un \to \infty$ とすれば, 実効的に1次元分だけ自由度が上がっていることが分かります. つ まり「量子揺らぎの効果が空間一次元分の自由度に対応する」ということです. $n,q \to \infty$ という極限を正確に取れば勿論形式的には厳密な議論をしている訳ですが, 実際の数値計 算では n,q は現実的に取り扱うことのできる有限の値です. 次節で述べる AdS/CFT 対 応を確認すると, おそらく n,q が有限の量子モンテカルロの空間がどのような性質のも のかもう少し理解が深まると思うので, この式を頭の片隅に留めておいて下さい.

2.2 AdS/CFT 対応

「AdS/CFT 対応 (AdS/CFT correspondence)」とは、「反ド・ジッター (Andi-de Sitter, AdS)時空」と呼ばれる曲がった時空の重力理論と、その無限遠方(「境界」と呼 ぶ)上の量子場(共形場理論,Conformal Field Theory, CFT)との間の等価性を述べたも のです⁷⁻¹¹.これは一般相対論と量子論を融合する試みである「超弦理論(superstring theory)」において、1997年に発見された対応原理です。この対応は様々な拡張がなさ れており、より一般に「ゲージ/重力対応(gauge/gravity correspondence)」と呼ば れています.特徴的なことは,強結合量子系の非摂動的な側面を,一つ空間次元が高い時 空の古典的一般相対性理論にマップして、幾何学の問題として扱うことができるというこ とです.ホログラフィーの典型的な例で,量子モンテカルロ法の等価定理とも似ています が、時空の計量が入るという視点に特徴があります。現在のところ物性・情報分野の専門 の方にはなじみの薄いキーワードですが、物性物理や量子情報にも次第に浸透してくるの ではないかと個人的には見ています、実際に物性物理への応用を研究されている弦理論研 究者もいらっしゃいます。例えば「ホログラフィック超伝導」という見方が議論されてい ます、励起子絶縁体の負性微分抵抗に対するアプローチもあるようです、但し、物性論専 門の立場からの議論が必要であるように思われます。近年研究が非常に盛んなトポロジカ ル絶縁体の幾何学を深く追求するという視点からも AdS/CFT の考え方が応用できそう です。またこの後に詳細を述べるエントロピーの応用やテンソル積変分においても、非常

に類似した考え方が色々なところに顔を出してきます.そのため本節では数学的なバック グラウンドを丁寧に見ていくことにします.

AdS 計量 (d+1) 次元 AdS 時空 AdS_{d+1} は, $R^{d+2} = \{(y^{-1}, y^{\mu}, y^{d}); \mu = 0, 1, ..., d-1\}$ 内の次の条件で定義される部分空間です (yの添え字はベキではないことに注意):

$$-(y^{-1})^2 + \eta_{\mu\nu}y^{\mu}y^{\nu} + (y^d)^2 = -L^2, \qquad (4)$$

ここで *L* は AdS_{*d*+1} の曲率半径と呼ばれる量で,長さのスケールを与えます.ここで $\eta_{\mu\nu}$ は AdS_{*d*+1} の符号が Lorentzian か Euclidean (Lobachevsky 空間とも呼ぶ) に応じて $\eta_{\mu\nu} = \text{diag}[\mp 1, 1, ..., 1]$ と選びます. $y^{-1} \ge y^0$ の二つの座標が時間的な符号を持ちます. AdS_{*d*+1} は,定負曲率空間であり,曲率 $R = -d(d+1)/L^2$ と負の宇宙定数 $\Lambda = -d(d-1)/L^2$ を持つ Einstein 方程式の解となっています.後からエントロピーの議論をするときにこ の曲率が重要な働きをすることを付記しておきます.この時空は初等的な微分幾何学で習 う「**双曲幾何** (Hyperbolic Geometry)」の高次元版で,ユークリッド平面や球面と共 に,幾何学で中心的な役割を果たします.AdS 時空の無限小線素は

$$ds^{2} = -(dy^{-1})^{2} + \eta_{\mu\nu}dy^{\mu}dy^{\nu} + (dy^{d})^{2}$$
(5)

で与えられますが、問題に応じて適切な計量テンソルを導入するために色々な形に座標変 換されます.よく用いられる座標系は次に示される Poincare 座標

$$z = \frac{L^2}{y^{-1} + y^d}, x^{\mu} = \frac{1}{L} y^{\mu} z, (\mu = 0, 1, ..., d - 1)$$
(6)

で, z は AdS 時空の境界近傍を調べるための動径座標と呼ばれます. このとき,

$$ds^{2} = L^{2} \eta_{\mu\nu} d\left(\frac{x^{\mu}}{z}\right) d\left(\frac{x^{\nu}}{z}\right) + d(y^{d} + y^{-1}) d(y^{d} - y^{-1})$$
(7)

$$= L^{2} \eta_{\mu\nu} \left(\frac{1}{z} dx^{\mu} - \frac{x^{\mu}}{z^{2}} dz \right) \left(\frac{1}{z} dx^{\nu} - \frac{x^{\nu}}{z^{2}} dz \right) + d \left(\frac{L^{2}}{z} \right) d \left(\frac{-L^{2} - \eta_{\mu\nu} y^{\mu} y^{\nu}}{y^{d} + y^{-1}} \right)$$
(8)

$$= \frac{L^2}{z^2} \eta_{\mu\nu} \left(dx^{\mu} - \frac{x^{\mu}}{z} dz \right) \left(dx^{\nu} - \frac{x^{\nu}}{z} dz \right) - \frac{1}{z^2} dz d \left(-L^2 z - \eta_{\mu\nu} y^{\mu} y^{\nu} z \right)$$
(9)

$$= \frac{L}{z^{2}} (dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}) + \frac{L^{2}}{z^{2}} \eta_{\mu\nu} \left(\frac{x^{\mu} x^{\nu}}{z^{2}} dz^{2} - \frac{x^{\mu}}{z} dz dx^{\nu} - \frac{x^{\nu}}{z} dz dx^{\mu} + dz d\left(\frac{x^{\mu} x^{\nu}}{z} \right) \right)$$
(10)
$$L^{2}$$

$$= \frac{L^2}{z^2} (dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu}) \tag{11}$$

と表わすことができます. $z \rightarrow 0$ を AdS 時空の境界(boundary)と呼び, この極限で は時空が無限に膨らんでいます(このままでは時空がコンパクトではないので, 後ほど極 限操作については注意します). この線素は, 次の変換

$$r = \frac{L^2}{z} \tag{12}$$

を行うことによって、

$$ds^{2} = \frac{L^{2}}{r^{2}}dr^{2} + \frac{r^{2}}{L^{2}}\eta_{\mu\nu}dx^{\mu}dx^{\nu}$$
(13)

と Schwartzshild 時空と類似した形に表わすことができます. $r \ll L$ (即ち $z \gg L$) は 「ホライズン近傍極限」と呼ばれており、ブラックホールにおける事象の地平線(イベン ト・ホライズン、単にホライズンと略す)の近傍を拡大して見るような極限です. また

$$z = L e^{\tau/L} \tag{14}$$

の変換によって

$$ds^{2} = d\tau^{2} + e^{-2\tau/L} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$
(15)

と表現する場合もあります.

d = 1の双曲幾何がこのあと頻出するので、もう少しだけ計算を進めましょう.d = 1の場合の式(11)をL = 1と規格化して書くと

$$ds^{2} = \frac{1}{y^{2}} \left(dx^{2} + dy^{2} \right) \tag{16}$$

となります. この計量の形から明らかなように, 定数 μ に対して, $x \to \mu x$ 及び $y \to \mu y$ とスケール変換してもこの線素は不変に保たれます. ここから AdS 計量と CFT には 何らかの関わりがありそうだと推測できるでしょう. さて, これを複素平面の上半平面 $H^+ = \{z = x + iy \in C : \text{Im} z > 0\}$ に

$$ds^2 = \frac{dz d\bar{z}}{y^2} \tag{17}$$

と書き換えします.これをメビウス変換(一次分数変換)

$$z = i\frac{1-w}{1+w} \tag{18}$$

して単位円盤 $D = \{w : |w| < 1\}$ 上のポアンカレ計量に写像します.メビウス変換は等角 写像ですね.具体的には

$$dz = \frac{-2idw}{(1+w)^2}, d\bar{z} = \frac{2id\bar{w}}{(1+\bar{w})^2}, y = \frac{z-\bar{z}}{2i} = \frac{1-|w|^2}{(1+w)(1+\bar{w})}$$
(19)

となることから

$$ds^2 = \frac{4dw d\bar{w}}{(1 - |w|^2)^2} \tag{20}$$

が得られます. $H \ge D$ は互いに等長になるように定義されているので, 問題に応じて使いやすい方の計量を取ることが出来ます. 以降では両方の表示を用いますが, 後者に関しては極座標変換 $w = re^{i\theta}$ をして計量を

$$ds^{2} = 4 \frac{dr^{2} + r^{2}d\theta^{2}}{(1 - r^{2})^{2}}$$
(21)

と表わし,更に

$$\cosh u = \frac{1+r^2}{1-r^2}$$
(22)

と変換して

$$ds^{2} = du^{2} + \left\{ (\cosh u)^{2} - 1 \right\} d\theta^{2} = du^{2} + (\sinh u)^{2} d\theta^{2}$$
(23)

という形で用います(双曲変形の項を参照).

AdS/CFT 対応 さて AdS/CFT 対応が主張することは、 AdS_{d+1} 時空における重力場 の古典的作用が(赤外カットオフ z_0 を持つ)、この時空の d 次元的境界に「住んで」い る CFT (紫外カットオフを持つ)の生成汎関数になるということです。即ち

$$\exp\left(-\frac{1}{2\kappa^2}I(\phi(x))\right)\Big|_{\phi(z\to z_0)=\phi_0} = \left\langle \exp\left(\int d^d x \phi_0(x)\mathcal{O}(x)\right)\right\rangle_{CFT}$$
(24)

ここで $I(\phi(x))$ は AdS_{d+1} の古典的作用, $\kappa^2 = 8\pi G_{d+1}^N$, G_{d+1}^N は (d+1)-次元 Newton 定数, $\mathcal{O}(x)$ は, AdS_{d+1} の境界での場 $\phi_0(x)$ と結合する CFT のスケーリング演算子です. この式は「**GKP(Gubser-Klebanov-Polyakov)-Witten 関係式」**と呼ばれます^{8,9}. ここから CFT の相関関数は重力場の古典作用を用いて

$$\langle \mathcal{O}(x_1)\cdots\mathcal{O}(x_n)\rangle_{CFT} = \frac{\delta}{\delta\phi(x_1)}\cdots\frac{\delta}{\delta\phi(x_n)}\exp\left(-\frac{1}{2\kappa^2}I(\phi(x))\right)\Big|_{\phi=0}$$
 (25)

と書くことができます. 従って, 重力場の古典解を求めて $z \rightarrow z_0 \sim 0$ の極限をとった結果, CFT の相関関数

$$\langle \mathcal{O}_a(z_1,\bar{z}_1)\mathcal{O}_b(z_2,\bar{z}_2)\rangle \sim \delta_{ab}(z_1-z_2)^{-2\Delta_a}(\bar{z}_1-\bar{z}_2)^{-2\bar{\Delta}_a}$$
(26)

が出てくるかということが問題です.古典的には,例えば質量 m の粒子に対するローレンツ変換不変な作用積分は $I = -m \int ds$ となりますから,系の長さスケールが対数関数的になるような曲がった時空であれば,指数関数とキャンセルしてベキ的相関が出てくると容易に想像できます.実際に AdS 計量は $ds \sim Ldz/z$ となっており, $s \sim L\log z$ が得られるので,動径方向に対しては対数的な長さとなります.但し上記の結果は,AdS 以外の計量では CFT の相関が現れないということを意味するわけではありません.より一般的な計量から出発して相関関数を計算した結果,意味のある性質を備えた相関関数が得られることはあってよいと思います.

AdS/CFT 対応が量子モンテカルロ法のようなタイプの量子古典対応から一歩進んでい る点は,「古典系の側に特別な『計量』を導入」することによって,「量子系側の『対称 性』を制御」できる点にあります.特に (1+1) 次元 CFT の場合には分かりやすいので すが,余剰次元の持つ自由度が無限次元の対称性に変換されています.これは超弦理論の 臨界次元を決めているポイントがローレンツ不変性という対称性であったことと何か相関 しているようにも思えます.以上のような計量の効果を積極的に物性論に導入できるかど うかは後の節で議論します.

Massless スカラー場に対する CFT のスケーリング次元の計算 前節の議論を具体的 に計算で表わしてみましょう^{8,9}. 簡単な例として, AdS ホライズン近傍幾何中を伝搬す る massless スカラー場を考えます. 作用は

$$I(\phi) = \frac{1}{2} \int d^{d+1} X \sqrt{g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \qquad (27)$$

$$= \frac{1}{2} \int d^d \vec{x} \int dz \frac{1}{z^{d-1}} \left\{ \left(\partial_z \phi\right)^2 + \eta^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right\}$$
(28)

で与えられます. 但し, $X = (z, x^{\mu}) = (z, \vec{x}), \mu = 0, 1, ..., d - 1$ です. 計量テンソル $g^{\mu\nu}$ の添え字は $g^{\mu\nu}g_{\nu\lambda} = \delta^{\mu}_{\lambda}$ と取り, g は $g_{\mu\lambda}$ の行列式です.

初めに $I(\phi)$ を変分して ($\delta I = 0$) Lagrange 方程式を作ると

$$\left(z^{d-1}\partial_z \frac{1}{z^{d-1}}\partial_z + \eta^{\mu\nu}\partial_\mu\partial_\nu\right)\phi = 0$$
(29)

が得られます.これに対応して $I(\phi)$ を以下のように変形します:

$$I(\phi) = \frac{1}{2} \int d^{d}\vec{x} \int_{z_{0}}^{\infty} dz \frac{1}{z^{d-1}} \left\{ z^{d-1} \partial_{z} \left(\phi \frac{1}{z^{d-1}} \partial_{z} \phi \right) -\phi \left(z^{d-1} \partial_{z} \frac{1}{z^{d-1}} \partial_{z} + \eta^{\mu\nu} \partial_{\mu} \partial_{\nu} \right) \phi \right\}$$
(30)

$$= \frac{1}{2} \int d^d \vec{x} \int_{z_0}^{\infty} dz \partial_z \left(\phi \frac{1}{z^{d-1}} \partial_z \phi \right)$$
(31)

$$= \frac{1}{2} \int d^d \vec{x} \left[\phi \frac{1}{z^{d-1}} \partial_z \phi \right]_{z_0}^{\infty}$$
(32)

最後の式の非積分関数はフラックス因子と呼ばれます.

さて, Lagrange 方程式を境界近傍 $z \rightarrow z_0$ において解きたいのですが, それはスカラー 場 ϕ の境界値 ϕ_0 を導入して

$$\phi(z_0, \vec{x}) = c \int d\vec{x}' \frac{z_0^d}{(z_0^2 + |\vec{x} - \vec{x}'|^2)^d} \phi_0(\vec{x}')$$
(33)

と表わせばよいことが分かります. ここで c は適当な定数です. $z_0 \rightarrow 0$ で分数の部分が デルタ関数となり,また $\phi(z_0) \sim z_0^d \phi_0$ より $\partial_{z_0} z_0^{1-d} \partial_{z_0} \phi(z_0) \sim 0$ が得られます. このとき

$$\partial_{z_0}\phi(z_0) \sim cdz_0^{d-1} \int d\vec{x}' \frac{\phi_0(\vec{x}')}{|\vec{x} - \vec{x}'|^{2d}} + \cdots$$
 (34)

となるので、最終的に $I(\phi_0)$ は

$$I(\phi_0) = \frac{1}{2} cd \int d\vec{x} d\vec{x}' \frac{\phi_0(\vec{x})\phi_0(\vec{x}')}{|\vec{x} - \vec{x}'|^{2d}}$$
(35)

のように振舞うことが分かります. これを指数関数の肩に乗せて汎関数微分を取れば,二 点相関関数が $|\vec{x} - \vec{x}'|^{-2d}$ に比例し,スケーリング次元が $\Delta = 2d$ で与えられることが分か ります. Massive スカラー場の場合も同様にして計算することができて,スケーリング次 元は $\Delta = (d + \sqrt{d^2 + 4m^2})/2$ で与えられます. ここでは簡単な見方だけを与えましたが, フラックス因子の評価は,ベッセル関数を用いてもう少し正確に行うこともできます.

2.3 トポロジカル絶縁体のバルク/エッジ対応

トポロジカル絶縁体は量子スピンホール系とも呼ばれ,通常の非磁性絶縁体のうちで或 る特殊なギャップレス表面状態(Dirac フェルミオン)を持つ物質です^{4,5}. この表面状態 が特殊であるのは,一般の表面状態の出現機構と異なって、バルク部分のトポロジカルな 性質に起因しているということです¹²⁻¹⁵. 従って,バルクの幾何が境界の励起モードの 性質を決めるという点で AdS/CFT 対応との類似性が見られます. このため,今考えて いる系がその境界であるような一つ次元の高い時空の曲率とトポロジーがエントロピー にどのような形で反映されるか調べることは,この後興味深い問題となります.

AdS/CFT 対応の場合と同様に、トポロジカル不変なバルク作用に対応する境界項を求めましょう. そのために Chern-Simons 作用から出発します (μ , ν , $\lambda = t$,x,y or 0, 1, 2):

$$S = \frac{q}{4\pi} \int d^3x \; \epsilon^{\mu\nu\lambda} a_{\mu} \partial_{\nu} a_{\lambda}, \tag{36}$$

ここで q は Chern 数と呼ばれるトポロジカル量で, Broch 関数に対する Berry 曲率を積 分した量です. $J^i = -\delta S/\delta a_i = (q/2\pi)E_i\epsilon^{ij}$ より, Hall コンダクタンス $\sigma_{xy} = q/2\pi$ が Chern 数を与えます. $\epsilon^{012} = -1$. 我々の考える系は二次元の下半分, 境界が y = 0 で定 義されているものとします.Chern-Simons 作用はコンパクトで境界がない場合に限って ゲージ不変なので、今の場合には境界に (1+1)-次元的作用を付加するか或いはゲージ固 定条件にその効果を取り込んで、系全体としてのゲージ不変性を回復する必要がありま す. 実際にゲージ変換 $a_{\mu} \rightarrow a_{\mu} + \partial_{\mu} \theta$ を行うと $S \rightarrow S + (q/4\pi) \int_{y=0} dx dt \ \theta \left(\partial_0 a_1 - \partial_1 a_0 \right)$ となっています. そこで $\theta(x, y = 0, t) = 0$ に対して境界で $a_0 = 0$ という条件を課すこと が最も簡単な方法です. このとき $\int dx^3 \epsilon^{\mu\nu\lambda} a_{\mu} \partial_{\nu} a_{\lambda} = \int dx^3 (-a_i \partial_0 a_j \epsilon^{ij} + 2a_0 \partial_i a_j \epsilon^{ij})$ とな るので $(\epsilon^{12} = -1)$, a_0 は Lagrange の未定係数のように働いており、スカラー場 ϕ に 対して $a_i = \partial_i \phi$ となります. 式 (36) に代入すると $S = \frac{q}{4\pi} \int dx dt \ \partial_0 \phi \partial_1 \phi$ が得られま す. この場合には境界モードの速度が0になってしまうのですが, $a_0 = 0$ というのは唯 ーの選び方ではなくて、一般には $\delta S = \delta a_i a_j \epsilon^{ij}$ からゲージ不変性を破る項が出てくるの で、 $\delta S = 0 \rightarrow a_0 + va_1 = 0$ という選び方も許されます. v がちょうど境界モードの速度 に対応します. このことに対応して新しい座標系 $\tilde{x} = x - vt$, $\tilde{t} = t$, $\tilde{y} = y$ を導入すると, ゲージ場は $\tilde{a}_{\tilde{t}} = a_t + va_x$, $\tilde{a}_{\tilde{x}} = a_x$, $\tilde{a}_{\tilde{y}} = a_y$ で与えられ, この変換で S は不変になりま す. $a_0 = 0$ の場合の方法を踏襲して境界作用を求めると

$$S = \frac{q}{4\pi} \int d\tilde{t} d\tilde{x} \,\partial_{\tilde{t}} \phi \partial_{\tilde{x}} \phi = \frac{q}{4\pi} \int dt dx \,\left(\partial_0 + v \partial_1\right) \phi \partial_1 \phi \tag{37}$$

となります. ここで運動方程式は $(\partial_0 + v\partial_1)\phi = 0$ となるので,境界モードは一方向に運動することが分かります. ここから境界モードは chiral Luttinger liquid で表わされることになります. 従って,トポロジカル量であるバルクの Chern 数と,代数的量である境界モードの数 (或いは chiral CFT の中心電荷) には対応関係が出てくることになります.

3 エンタングルメント・エントロピーと面積則

考えている物理系の様々な相関関数や秩序変数を調べる代わりに、「エンタングルメ ント・エントロピー (entanglement entropy)」と呼ばれる情報エントロピーを計算す ることができます、とりわけ、低次元量子系のように対応する古典的秩序が存在せず、よ い秩序変数が定義しにくい場合には、この量が非常に強力なプローブになり得ます。単に 「秩序変数」を「エントロピー」と呼び替えただけでは物理的意義は薄いのですが、豊富 な物理を含んでいることが分かっており、近年非常に活発な研究対象です. エンタングル メント・エントロピーは通常の熱力学的エントロピーとちょっと違った性格を持っている ので、本節では歴史的な経緯も含めてその意味合いを議論します。エンタングルメント・ エントロピーが含んでいる量子系の主な情報は「面積則」「量子異常」「量子次元」の三つ と言ってよいかと思います、「面積則」は通常の示量変数である熱力学エントロピーとの 最も大きな違いをあたえるもので、基本的には部分系のもつ情報エントロピーが外界と情 報をやりとりする境界面積に比例するということです.「面積則」がエンタングルメント・ エントロピーに関しては一つ中心的な話題です。また「量子異常」はホログラフィー原理 を背景として,量子系の代数的性質と古典系の幾何をつなぎます.特に,空間 d 次元量 子系中の部分系の情報エントロピーは、対応する (d+1) 次元古典空間において部分系を 囲む極小曲面の面積を計算することと等しい場合があることが分かっています.即ち量子 系からは直接見えない余剰次元方向の歪みかたに量子揺らぎの効果を押し込めて、あたか も古典的な計算にマップすることができるのです。序論で考え方としてはだいぶ詳しく言 及したことですが、これが次節以降で述べるテンソル積変分法の幾何学的な意味合いでも あります.更に「量子次元」に関しては系のトポロジカルな性質を反映します.

3.1 歴史的経緯:Bekenstein-Hawking の公式

70年代の一般相対性理論,とりわけブラックホールの問題で,エントロピーや情報の 問題が議論されています.これは現在「Bekenstein-Hawking の公式」或いは「Bekenstein エントロピー」と呼ばれるもので,ブラックホール内部の情報エントロピーが,ブ ラックホールの「ホライズンの面積」に比例するというものです¹⁶⁻¹⁸.一方,熱力学エ ントロピーは示量変数ですから,通常は系の体積に比例するはずです.この奇妙な性質が 所謂「面積則 (Area Law)」に繋がっていきます.この事情を理解するために,先ずは Einstein 方程式の Schwartzschild 解から出発しましょう:

$$ds^{2} = \left(1 - \frac{2GM}{rc^{2}}\right)c^{2}dt^{2} - \left(1 - \frac{2GM}{rc^{2}}\right)^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right),$$
(38)

ここで Schwartzschild 半径は

$$r = \frac{2GM}{c^2} \tag{39}$$

で定義されます. Schwartzschild 半径はブラックホールの質量に比例するため,物質がブ ラックホールに落ち込むとホライズンの面積が増大します. それで想像を逞しくして,ブ ラックホールに落ち込んだ物質が持っていた「情報量」とブラックホールの大きさに関係 がありそうだと認識してみようということです. さしあたり面積 $A = 4\pi r^2$ の計算をして みましょう. 先ずは Schwartzschild 半径の式と表面重力

$$\kappa = \frac{GM}{r^2} \tag{40}$$

の式を組み合わせると、微分形式で

$$dM = \frac{\kappa}{8\pi G} dA \tag{41}$$

が示せます. ここでエネルギーと質量の等価性に関する式 $E = Mc^2$ より

$$dE = c^2 dM = c^2 \frac{\kappa}{8\pi G} dA \tag{42}$$

となって、熱力学の第一法則 dE = TdS から

$$dS = \frac{1}{T}c^2 \frac{\kappa}{8\pi G} dA \tag{43}$$

が得られます.ここで,Hawking によって量子効果に伴うブラックホールからの放射が存在することが示されており(これはとても到達できない低い温度),この放射温度 T_H が

$$T_H = \frac{\hbar\kappa}{2\pi k_B c} \tag{44}$$

であることを認めると、エントロピーは

$$dS = \frac{k_B c^3}{4G\hbar} dA \propto dA \tag{45}$$

となります.従って,通常の熱力学を考えているにも関わらず,最初は示量変数と思って いたエントロピーはブラックホールの体積ではなくて表面積に比例するという結果が得ら れます.Hawking 温度 *T_H* が表面重力に比例するので,質量に依存しているパラメータ が皆消えて,普遍定数だけで書けてしまうというところがポイントと思われます.いずれ にしても,途中の議論で量子力学を暗に仮定していることを考慮に入れると,これを正し く理解するには,重力も含めた量子化が鍵であることは疑いないでしょう.ボルツマンの 式で与えられる *e^S* 個のミクロな状態数がどこから来るのか本当は知らなくてはなりませ ん.元々時空の歪みを一般相対論で計算していた訳だから,それを用いて面積則が出てく るということは,重力場とエントロピーの微視的・量子的側面が繋がっていることを暗に 示しています.従ってブラックホール・エントロピーは量子重力理論の主要な問題の一つ でもあるわけです.そこで一つの考え方としては,AdS/CFT 対応をもとにして重力理論

します.また古典的にはホライズンの面積が0であるような模型で,歪みの中心からス トリングのスケールに位置する「ストレッチ・ホライズン」の面積が Bekenstein エント ロピーに等しくなり,そのホライズンの異なる幾何が微視的状態数 e^S に対応することも 調べられています¹⁹.いずれにしても重力場によって曲がった幾何学やブラックホールと 対応する量子論のエントロピーとは非常に深いつながりがあるようです.

3.2 エンタングルメント・エントロピー

エンタングルメント・エントロピー(「部分系の密度行列」に対する von Neumann エ ントロピー) エンタングルメント・エントロピーとは,或る部分系 A にいる観測者が, その部分系以外の環境 B と情報のやり取りをしているときに、どの程度の情報量をやり とりしているかを、部分系 A の立場から推測しようとする尺度です.基本的には相関関 数をちょっと変わった尺度で眺めていると考えて頂ければ結構です.ここで部分系 A に いる観測者は,外界 B の情報に直接的にはアクセスできないと考えて下さい.そうする と,仮にモデルに寄らない一般的な議論からエンタングルメント・エントロピーを計算す ることができれば,直接アクセスできない情報が手に入るかもしれません(悪いことを考 えてはいけませんが…).初めに系全体(しばしば「ユニバース」「スーパーブロック」な どと呼ばれます)の波動関数を導入します:

$$\left|\psi\right\rangle = \sum_{x,y} \psi(x,y) \left|x\right\rangle \left|y\right\rangle,\tag{46}$$

ここで $|x\rangle$ は A の基底, $|y\rangle$ は B の基底です. x, y は離散値でも連続値でも構いません. 連続値の場合には、和の記号が積分になります. スーパーブロックの波動関数 $\psi(x, y)$ は 二つの部分系の添え字 x, y を持っているので、これを行列と見なして以下のように特異 値分解してみましょう:

$$\psi(x,y) = \sum_{l} U_{l}(x) \sqrt{\lambda_{l}} V_{l}(y), \qquad (47)$$

即ち

$$|\psi\rangle = \sum_{x,y} \sum_{l} U_{l}(x) \sqrt{\lambda_{l}} V_{l}(y) |x\rangle |y\rangle = \sum_{l} \sqrt{\lambda_{l}} |U_{l}\rangle |V_{l}\rangle.$$
(48)

ここでカラムユニタリー行列 $U_l(x)$ と $V_l(y)$ はそれぞれ

$$|U_l\rangle = \sum_x U_l(x) |x\rangle \tag{49}$$

$$|V_l\rangle = \sum_{y} V_l(y) |y\rangle$$
(50)

-400 -

と取ります.式(48)は Schmidt 分解と呼ばれています.この式から明らかなように, 特異値 $\sqrt{\lambda_i}$ が部分系 *A* と環境 *B* の量子的もつれの大きさを与えます.

この特異値の二乗は部分系及び環境を縮約した密度行列の固有値であることはすぐに確 かめることが出来ます.即ち,密度行列を

$$\rho_A(x,x') = \sum_y \psi(x,y)\psi^*(x',y) = \sum_l U_l(x)\lambda_l U_l^*(x'),$$
(51)

$$\rho_B(y,y') = \sum_x \psi(x,y)\psi^*(x,y') = \sum_l V_l(y)\lambda_l V_l^*(y'),$$
(52)

と定義すると,明らかに λ_l が ρ_A と ρ_B の固有値になっていることが分かります.また ρ_A と ρ_B の固有値は要素数が違ってもゼロでない部分は互いに一致することが分かりま す. 全系の波動関数に対する密度行列については $\rho^2 = \rho$ が成立しますが,部分系の密度 行列に対しては $\rho_A^2 \neq \rho_A$ となります. これらの密度行列を用いて,システム A にいる観 測者にとってのエントロピー S_A を

$$S_A = -tr_A(\rho_A \log \rho_A) = -\sum_l \lambda_l \log \lambda_l, \tag{53}$$

と定義します. 即ち, S_A とはスーパーブロックにおいて状態 $|U_l\rangle$ 及び $|V_l\rangle$ を見出す確率 λ_l に対する情報のエントロピーです. 以降の節では, 部分系 A, B への分割が空間的では ない場合も考えますので, 混乱がある場合には「幾何学的 (geometric)」エントロピーと 呼ぶことにします. 定義より明らかに

$$S_A = S_B \tag{54}$$

が成り立ちます.この一見単純な関係式は非常に重要なものです.空間 d 次元系を大き さの異なる二つの部分系に区切った場合,各部分系のエンタングルメント・エントロピー は一般には示量変数にならないことを示唆しています.大きさの異なる部分系で共通して いる量として考えられるのは「d-1 次元的境界」です(これが唯一かどうかはこの段階 では不明なので,きちんと証明する必要があります.それがこの節での大きな課題です). ブラックホール・エントロピーが面積則に従うこともこの結果のアナロジーと捉える事が できます.

ボルツマンの式は大雑把にはエンタングルメント・エントロピーの上限を与える エン タングルメント・エントロピーと通常の熱力学的・統計力学的エントロピーがどのよう に異なるのかを議論しましょう.そのために,密度行列の固有値のうち m 個が全て 1/m である場合を考えましょう.これは最もエンタングルメントが強い状況を想定しています (maximally entangled state と呼ばれます).また熱統計力学における通常の等重率の原 理に対応します.このときエンタングルメント・エントロピーはボルツマンの式

$$S_A = -\sum_{l=1}^{m} \frac{1}{m} \log \frac{1}{m} = \log m$$
(55)

に漸近します.但しこれはあくまで情報エントロピーの上限であると思われます.何故か というと,DMRG 計算などで密度行列の固有値分布を見ている方には自明なことと思わ れるのですが,一般には,対応する固有状態の実現確率である固有値は等しい確率分布に は従いません.特に一次元量子系や二次元古典系の場合には,固有値の減衰は非常に早 く,実現確率の大きな状態は非常に限られています.実現確率に分布がある場合にはエン トロピーはこれよりも小さくなります.逆に言うと,通常の熱力学エントロピーが示量変 数であって体積に比例するのと異なって,情報エントロピーはそれよりも複雑にはならな い場合があり得るということを示唆しています.これも情報エントロピーの面積則を予感 させます.以上は効率的な量子計算を考える上でも重要なことです.

3.3 面積則(Area Law, Entropic Boundary Law)

境界での情報のやり取りと対数補正 エンタングルメント・エントロピーは、一般的には システムサイズ L の増加関数です。系の性質に応じてスケーリングの関係式が変わって きます。非臨界系では L が「相関長 ξ 」を越えるあたりで頭打ちになります。またシス テムサイズ L が相関長 ξ 以下であれば、

$$S \sim L^{d-1} \tag{56}$$

となります²⁰⁻²⁹. この振る舞いは先ほど述べたように,我々の空間3次元において,通 常エントロピーは示量変数であるために部分系の体積に比例するところが,次元が一つ 減った「面積」の次元,即ち部分系間の境界の面積がやり取りする情報量を決めるという ことから,「面積則(Area Law)」と呼ばれています.また臨界状態であっても空間二 次元以上の系では,エントロピーの主要項はやはり面積則に従うということが示されてい ます.一方,一次元臨界系やフェルミ面を持つ任意の次元の系では対数補正がついて

$$S \sim L^{d-1} \log L \tag{57}$$

となることが知られています^{22,29-42}. 対数補正は「面積則の破れ」と呼ばれますが,後 の節で述べるように, 両者は「ホログラフィック次元」も含めた仮想空間で面積の次元に なっていることが分かりますので,本稿では両者をまとめて「面積則」と呼ぶ場合があり ます(状況に応じて適宜補足します).以下で見るように,一次元臨界系のエントロピー $S \sim \log L$ は共形場理論から厳密な形が得られています.また調和振動子の連成系に帰着 できる模型に関しては詳しい解析が行われており, $S \sim L^{d-1}$ となることが色々な空間次 元で示されています.それ以外の場合に関しては,ある特定の模型については解析的・数 値的に正確な結果が得られていますが,実際には模型の相互作用の形にも依るはずなの で,物理的な視点に立って一般的に議論することは難しいようです.やや数学的な証明が 多いところが少し残念です. 面積則を中心として見たエントロピーと相関関数の関わり 面積則の成立条件やその破 れに関しては,部分系の境界から測って,「どの深さの領域まで」情報のやり取りがなさ れているかという「エントロピー密度」を導入するのが自然です.既に述べたように,ボ ルツマンの式がエンタングルメント・エントロピーの上限ですから,境界からずっと多く まで相関が及べばその上限に到達するため,一般的にエントロピー密度 $f(\delta)$ は境界から 次第に減衰する関数となるはずです.そこで深さ x (相関長 ξ より短いが,カットオフよ りは十分大きいとします)まで積分したエンタングルメント・エントロピーを

$$S_A(x) \sim N_{\text{eff}} \partial A \int_a^x d\delta f(\delta)$$
 (58)

と書きましょう. *a* は赤外カットオフです. N_{eff} は境界を行き来する準粒子の数ですが, 共形異常の一般形と思って差し支えありません. ∂A は非臨界の面積則の部分です. 今考 えている領域の体積を A と書きます. $\delta \to \infty$ での $f(\delta)$ の漸近形は, $S_A(x)$ が $x > \xi$ で 飽和する形です. ここで $f(\delta)$ の関数形として $f(\delta) = \text{const}$ を仮定すると

$$S_A(x) \sim N_{\text{eff}} \partial A(x-a) \sim A$$
 (59)

となり、エントロピーが体積に比例する通常の熱力学エントロピーと同じ関係式が出てきます. また指数関数的減衰 $f(\delta) = e^{-\delta}$ を仮定すると

$$S_A(x) \sim N_{\text{eff}} \partial A \left(e^{-a} - e^{-x} \right) \sim \partial A$$
 (60)

となり、面積則が得られます. $f(\delta) = \delta^{-n}$ で n > 1 の場合にも基本的には面積則が成り 立ちます. 減衰が非常に遅く $f(\delta) \sim \delta^{-1}$ の場合だけは特異で,

$$S_A(x) \sim N_{\text{eff}} \partial A \left(\log x - \log a\right) = N_{\text{eff}} \partial A \log\left(\frac{x}{a}\right)$$
 (61)

となり,面積則とその対数補正 log(*x*/*a*) が現れます.関数が他の相関関数とどのような 関係にあるのかこの時点ではあまり明快ではないのですが,相関のベキ的減衰が対数補正 を出すなど,臨界現象の一般論と繋がっているようにも感じられます.もう一歩踏み込ん だ議論はみなさんへの宿題と致します.

3.4 面積則に対する質量項の依存性について

面積則の導出には調和振動子系の直接対角化が最も一般的に用いられます^{20,21,27-29}.調 和振動子の連成系は,具体的に波動関数が求められるだけでなく,色々な模型の有効模型 としての意味合いを持たせられるので,面積則の一般論を展開する上では出発点となる べき模型だからです.しかしながら数学的或いは数値的な取り扱いが主となってしまい, 物理的な意味合いを検討するには少々取り扱いにくい側面があります.そこで本稿では Bekenstein エントロピーを別な形で表わす方法を用います²³⁻²⁵.即ち,ブラックホール

の計量をあらわに取り入れて熱力学的エントロピーを計算することで、それによって部分 系をトレースアウトするという効果を表わそうということです. $S_A = S_B$ が既に面積則 に直結することは述べましたので、ここでは特に Klein-Gordon 模型の質量項がエントロ ピーの大きさにどのように反映されているか調べましょう. 即ち励起ギャップや相関長と エントロピーの飽和がどのように相関しているか見るということです.

ブラックホールを表わすために Schwartzshild 計量から出発しましょう $(c = \hbar = 1)$ します. $h = 2\pi$):

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega_{d-1},$$
(62)

ここで $\theta = t/4GM$, $\eta = \sqrt{8GM(r - 2GM)}$ と座標変換し,以下のように表わします:

$$ds^{2} = -\eta^{2} \left\{ 1 + \left(\frac{\eta}{4GM}\right)^{2} \right\}^{-1} d\theta^{2} + \left\{ 1 + \left(\frac{\eta}{4GM}\right)^{2} \right\} d\eta^{2} + \frac{1}{4} (4GM)^{2} \left\{ 1 + \left(\frac{\eta}{4GM}\right)^{2} \right\}^{2} d\Omega_{d-1},$$
(63)

ここで簡単のために $M \rightarrow \infty$ の場合を考えると,

$$ds^{2} = -\eta^{2}d\theta^{2} + d\eta^{2} + \sum_{i=1}^{d-1} dy_{i}^{2}$$
(64)

と表わすことが出来ます. これは Rindler 計量と呼ばれます. 元々の球対称ホライズンが 平坦になって, y_i 座標に関しては $M \to \infty$ なので $y_i \in [-L/2, L/2]$ と赤外カットオフ を入れると,ホライズンの面積は単純に L^2 となります. y_i には周期境界条件を課しま す. η 座標が特殊に見えますが,座標変換 $x_1 = \xi \sinh(\theta/2), x_2 = \xi \cosh(\theta/2)$ で通常の Minkowski 計量で表わせます.

Rindler 時空 R を伝搬するスカラー場の作用を導入します:

$$S = -\frac{1}{2} \int_{\mathcal{R}} d\theta d\eta d\vec{y} \sqrt{-g} \left\{ (\nabla \phi)^2 + m^2 \phi^2 \right\}, \tag{65}$$

ここで $\vec{y} = (y_1, y_2)$. スカラー場は Klein-Gordon 方程式

$$(\nabla^2 - m^2)\phi = \left(-\frac{1}{\eta^2}\frac{\partial^2}{\partial\theta^2} + \frac{\partial^2}{\partial\eta^2} + \frac{1}{\eta}\frac{\partial}{\partial\eta} + \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} - m^2\right)\phi = 0$$
(66)

を満たしますが, η 座標だけ特殊なので

$$\phi = A(\eta) \exp(-i\omega\theta + i\vec{k} \cdot \vec{y}) \tag{67}$$

という解を仮定します. $\vec{k} = (2\pi n_1/L, 2\pi n_2/L)$. このとき $A(\eta)$ が満たす方程式は

$$\left\{\frac{d}{d\eta}\left(\eta\frac{d}{d\eta}\right) + \frac{\omega^2}{\eta} - \xi^2\eta\right\}A(\eta) = 0$$
(68)

で与えられます. 但し $\xi = \sqrt{|\vec{k}|^2 + m^2}$ と定義しました. ここで $x = \log(\xi\eta), E = \omega^2/2$ と座標変換すると, A(x)が満たす方程式は一粒子の Schrödinger 方程式に帰着できて,

$$\left(-\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}e^{2x}\right)A(x) = EA(x)$$
(69)

が得られます. 即ち, ポテンシャル $V(x) = (1/2)e^{2x}$ 中を運動する質量 m = 1の粒子の 問題となります. これを WKB 法で解きます. 古典的運動の積分 $p = \sqrt{2m(E-V)}$ に対 する Bohr-Sommerfeld の量子化条件を次のように導入します:

$$n\pi = \int_{\log(\xi\epsilon)}^{\log\omega} dx \sqrt{2\left(E - V(x)\right)} \tag{70}$$

この積分は実行することができて、次の式

$$\frac{d}{dx} \left[\log \left(\frac{1 + \sqrt{1 - (e^x/\omega)^2}}{1 - \sqrt{1 - (e^x/\omega)^2}} \right) - 2\sqrt{1 - (e^x/\omega)^2} \right] = -2\sqrt{1 - (e^x/\omega)^2}$$
(71)

を考慮すれば,

$$n\pi = \frac{\omega}{2} \log \left(\frac{1 + \sqrt{1 - (\xi\epsilon/\omega)^2}}{1 - \sqrt{1 - (\xi\epsilon/\omega)^2}} \right) - \omega\sqrt{1 - (\xi\epsilon/\omega)^2}$$
(72)

が得られます. これを ω について陽に解くことはできませんが, この解を $\omega_n(\vec{k})$ と書いておきます. 平方根の中が正定値となるために $\omega \geq \xi\epsilon$ という条件がつきます.

ここでは熱力学エントロピー $S = \beta^2 \partial F / \partial \beta$ を計算しますが、ブラックホールの中には アクセスできないので、気持ちとしては部分系を縮約したエントロピーを計算していると イメージして下さい. 自由エネルギーは以下のように計算できます:

$$F = -\frac{1}{\beta} \sum_{n,\vec{k}} \log \sum_{m=0}^{\infty} e^{-\beta m \omega_n(\vec{k})}$$
(73)

$$\sim \frac{1}{\beta} L^2 \int \frac{d\vec{k}}{(2\pi)^2} \int_{\xi\epsilon}^{\infty} d\omega \frac{dn}{d\omega} \log(1 - e^{-\beta\omega})$$
(74)

$$= \frac{1}{\beta} \left(\frac{L}{2\pi}\right)^{-} \int d\omega \log(1 - e^{-\beta\omega})$$

$$\times \int_{0}^{\sqrt{(\omega/\epsilon)^{2} - m^{2}}} dkk \log\left(\frac{1 + \sqrt{1 - (\epsilon/\omega)^{2}(k^{2} + m^{2})}}{1 - \sqrt{1 - (\epsilon/\omega)^{2}(k^{2} + m^{2})}}\right)$$
(75)

$$= \frac{1}{\beta} \left(\frac{L}{2\pi}\right)^2 \int_{\epsilon m}^{\infty} d\omega \log(1 - e^{-\beta\omega}) \\ \times \left\{ (\omega/\epsilon)^2 \sqrt{1 - (\epsilon m/\omega)^2} + \frac{m^2}{2} \log\left(\frac{1 + \sqrt{1 - (\epsilon m/\omega)^2}}{1 - \sqrt{1 - (\epsilon m/\omega)^2}}\right) \right\}.$$
 (76)

ここで massless の場合,

$$F = \frac{1}{\beta} \left(\frac{L}{2\pi\epsilon}\right)^2 \int_0^\infty d\omega \omega^2 \log(1 - e^{-\beta\omega})$$
(77)

となります. また massive の場合には

$$F \sim \frac{1}{\beta} \left(\frac{L}{2\pi\epsilon}\right)^2 \int_{\epsilon m}^{\infty} d\omega \omega^2 \log(1 - e^{-\beta\omega}) - \frac{1}{2\beta} (\epsilon m)^2 \left(\frac{L}{2\pi\epsilon}\right)^2 \int_{\epsilon m}^{\infty} d\omega \log(1 - e^{-\beta\omega}) \cdots (78)$$

となります. 双方 $(L/\epsilon)^2$ の依存性があります. ϵ によるカットオフは x の積分からきま す. 式 (78) 中の二つの積分はいずれも負の値です. 従って非常に荒っぽい議論ですが, m が大きくなるにつれて $(L/\epsilon)^2$ の係数が小さくなる傾向があります. 実際は $F \in \beta$ で 微分して Rindler 温度 $\beta_R = 2\pi$ を代入したものが最終的なエントロピーとなります (純 粋状態のエンタングルメント・エントロピーを計算すると,それは温度 β_R の混合状態 に見えるということを意味します. ちなみに $M \to \infty$ の極限では $T_H = 0$ です). 励起 ギャップが開くと相関が指数関数的に減衰して,部分系を一定以上大きくしても S は飽 和するため, m を大きくして $(L/\epsilon)^2$ の寄与が弱くなることとはコンシステントです. ま た前節で議論した内容,即ち境界からどれだけ相関が遠くまで及んでいるか,ということ は,今の見方でいくと境界から垂直方向の時空の歪みと関係していることになます. 後に 議論する AdS/CFT 対応によるエンタングルメント・エントロピーの計算でもこの見方 が現れます.

3.5 一次元臨界系のエンタングルメント・エントロピーの計算

エンタングルメント・エントロピーの具体的な性質を d = 1 臨界系に対して調べましょう.即ち,長さ L の部分系のエントロピーが $S \sim L^{1-1} \log L = \log L$ となることを示します. 一次元多体系の精密な取り扱い法は幾つか知られていますが,エンタングルメント・エントロピーの計算には二次元(空間十時間)共形場理論が非常に強力な道具です³⁰⁻³⁷. というのも、「エンタングルメント」と「相関関数」は表裏一体の関係であることは既に述べましたが,その相関関数はまさに共形場理論で完全に特徴づけることができるからです^{43,44}. 一方,Bethe 仮説法やボゾン化法は熱力学的量を計算することが得意ですが,今の場合にはうまく適用することは難しいようです.

また一次元量子多体系に対する数値解析的な手法では,密度行列繰り込み群(Density Matrix Renormalization Group, DMRG)が非常に優れています^{45,46}.本稿と関連 する話題としては,共形場理論の成果を具体的な強相関電子系の模型の立場から解析した り,AdS/CFT 対応と同様の原理を用いた数値計算の効率化などが試みられています.

レプリカ・トリック 以下では場の理論的方法を用いますが,エントロピーを計算するに はスピングラスの計算で用いられる「レプリカ法」と同じ方法を用いるのが都合がよいよ

図 1: ランダムに生成した 500 個の λ_i に対する Tsallis エントロピー.シンボルの違い は異なる λ_i の組に対する計算結果.基本的には分布に寄らないことが分かります. S_n は $n \rightarrow 1+$ でエンタングルメント・エントロピー $S = \log 500 = 6.2146$ に正しく漸近しま す.関数が滑らかに変化しているので、レプリカ・トリックを使って整数 n に対する共 形場理論を行った後に解析接続できると考えられます.

うです. このために「Tsallis エントロピー」と呼ばれるエントロピーを導入します:

$$S_n = \frac{1 - \sum_{i=1}^m \lambda_i^n}{n - 1},$$
(79)

ここで λ_i は部分系の密度行列 ρ の固有値です. このエントロピーは非加法的で,

$$S_n(A+B) = S_n(A) + S_n(B) + (1-n)S_n(A)S_n(B)$$
(80)

という関係を見たします. ここで $n \to 1+$ の極限を取ると, Tsallis エントロピーはエン タングルメント・エントロピーに一致することが知られています. この n も一種の余剰 次元ということになるのですが, それはこの後意味が分かるかと思います. 証明は

$$\lambda_i^n = \lambda_i \lambda_i^{n-1} = \lambda_i e^{(n-1)\log\lambda_i} = \lambda_i \sum_{k=0}^\infty \frac{1}{k!} \left\{ (n-1)\log\lambda_i \right\}^k$$
(81)

と展開してから式(79)に代入すると

$$S_n = -\sum_{i=1}^m \lambda_i \sum_{k=1}^\infty \frac{1}{k!} (n-1)^{k-1} (\log \lambda_i)^k$$
(82)

が得られますので、 $n \rightarrow 1+$ の極限でk = 1の項だけ残って

$$\lim_{n \to 1+} S_n = -\sum_{i=1}^m \lambda_i \log \lambda_i \tag{83}$$

となります. n を整数として取り扱って、最後に微分したり極限を取ったりしますので、 本当は取り扱いに十分注意が必要ですが、図1にあるように関数 S_n は n に対して滑ら

かな関数ですので、特殊な問題でない限り解析接続できると考えていいでしょう.ここで 元の式(79)にロピタルの定理を使うと

$$\lim_{n \to 1+} S_n = -\lim_{n \to 1+} \sum_{i=1}^m n\lambda_i^{n-1} = -\lim_{n \to 1+} \frac{\partial}{\partial n} tr\rho^n = -\lim_{n \to 1+} \frac{\partial}{\partial n} \log tr\rho^n$$
(84)

が得られます. 最後の式では $tr\rho = 1$ を用いました. 従って $tr\rho^n$ を計算すればよいとい うことになります. この式から分かるように, 元の系 ρ の「レプリカ」を n 個用意して, それを結合した系が ρ^n となります. なお非加法エントロピーで, $n \rightarrow 1+$ のときにエン タングルメント・エントロピーに漸近する量として, Renyi エントロピー

$$S_n = \frac{1}{1-n} \log tr \rho^n \tag{85}$$

というエントロピーも知られています.次の節で計算する $tr \rho^n$ を用いると,式(84)と式(85) は $n \rightarrow 1+$ で同じ結果を与えます.

密度行列とレプリカの接続条件 つづいて部分系 A の密度行列とレプリカの接続条件を 整理します. 先ず n = 1 の場合から始めましょう. 場の演算子 $\phi(t, x)$ に対して, 部分系 A と環境 B を区別する添え字を $\phi_A(t, x), x \in [u, v], \phi_B(t, x), x \notin [u, v]$ と書きます. 時 刻 t = 0 で系が基底状態 $|0\rangle$ にあり, この密度行列は $|0\rangle\langle 0|$ で与えられます. このとき, 環境 B を縮約した部分系 A の密度行列 ρ_A は

$$\langle \phi_A' | \rho_A | \phi_A'' \rangle = \int D\phi_B \langle \phi_A' \phi_B | 0 \rangle \langle 0 | \phi_A'' \phi_B \rangle$$
(86)

と表わされます. エンタングルメント・エントロピーは $S_A = -\int D\phi_A \langle \phi_A | \rho_A \log \rho_A | \phi_A \rangle$ で与えられます. 積分に現れる伝搬関数は(時間を Euclid 化します)

$$\langle \phi'_A \phi_B | 0 \rangle = \int D\phi \ e^{-\int_0^\infty d\tau \int dx \mathcal{L}}$$
(87)

となり,経路積分は全ての $\phi(\tau > 0, x)$ で積分しますが, $\tau = 0$ のときに $x \in [u, v]$ で $\phi(0, x) = \phi'_A(0, x), x \notin [u, v]$ で $\phi(0, x) = \phi_B(0, x)$ となるように取ります. これを用いる と密度行列は以下のように表わされます:

$$\langle \phi_A' | \rho_A | \phi_A'' \rangle \sim \int D\phi e^{-S} \delta[\phi_A(\tau = +\epsilon) - \phi_A'] \delta[\phi_A(\tau = -\epsilon) - \phi_A''] e^{\int_{-\epsilon}^{+\epsilon} d\tau \int_u^v dx \mathcal{L}}, \quad (88)$$

ここで ϵ は無限小の数です.時間と空間を $z = x + i\tau \in \mathbb{C}$ と表わすと,部分系 A のところにスリットが入った複素平面を考えていることになります.

以上をもとに, $tr(\rho_A)^n$ は n 枚の複素平面をスリットのところで連結した Riemann 面 (\mathcal{R}_n と表わす) 上の分配関数によって与えられることになります. k 番目のレプリカ上 の ϕ_A を $\phi_A^{(k)}$ と表わし, 異なる面の接続条件を

$$\phi_A^{(k)}(\tau = -\epsilon, x) = \phi_A^{(k-1)}(\tau = +\epsilon, x) \quad (k = 2, 3, ..., n)$$
(89)

$$\phi_A^{(1)}(\tau = -\epsilon, x) = \phi_A^{(n)}(\tau = +\epsilon, x)$$
 (90)

エンタングルメントで見る時空の幾何学構造とテンソル積波動関数

図 2: R_nの模式図.

で与えます(図 2). それらでの経路積分が密度行列の積を意味します. 以降 $tr(\rho_A)^n$ を $tr(\rho_A)^n = \frac{1}{(Z_1)^n} \int_{\mathcal{R}_n} D\phi \ e^{-\int d\tau dx \ \mathcal{L}^{(n)}} = \frac{Z_n}{(Z_1)^n}$ (91)

と表わします. n = 1 のときに $tr \rho_A = 1$ となるように規格化しています. ここでラグラ ンジアン密度 $\mathcal{L}^{(n)}[\phi_1, \phi_2, ..., \phi_n](z)$ は平坦な \mathbb{C} 上で定義された $\mathcal{L}[\phi_k](z)$ の和

$$\mathcal{L}^{(n)}[\phi_1, \phi_2, ..., \phi_n](z) = \sum_{k=1}^n \mathcal{L}[\phi_k](z)$$
(92)

で表わされ、R_nによる時空の曲がりは陽に含まず、拘束条件として導入します.

分岐点ツイスト場 式 (92) のラグランジアン密度は任意のレプリカ交換に対して不変で すが,特に式 (89) 及び (90) で与えられる境界条件の場合には,レプリカのサイクリッ クな交換を表わす以下の二つの対称性が残ります:

$$\mathcal{L}^{(n)}[\phi_1, \phi_2, ..., \phi_n](z) = \mathcal{L}^{(n)}[\phi_n, \phi_1, ..., \phi_{n-1}](z) = \mathcal{L}^{(n)}[\phi_2, ..., \phi_n, \phi_1](z).$$
(93)

即ち,分配関数は上記の対称性を持つ必要があります.これらは分岐点ツイスト場と呼ば れる演算子 T_n , \tilde{T}_n ($T_n\phi_j = \phi_{j-1}$, $\tilde{T}_n\phi_j = \phi_{j+1}$, $\phi_0 = \phi_n$, $\phi_{n+1} = \phi_1$)と関係していて,

$$Z_n \propto \langle \mathcal{T}_n(u) \hat{\mathcal{T}}_n(v) \rangle_{\mathcal{L}^{(n)}, \mathbb{C}}$$
(94)

となります^{32,33}. これは完全系 $1 = \sum_{\phi} \prod_{k} |\phi_{k}^{A} \phi_{k}^{B}\rangle \langle \phi_{k}^{A} \phi_{k}^{B}|$ を挟むことで示せます. 或い は \mathcal{R}_{n} の時空の曲がりの効果を顕に取り入れた作用を $S_{\mathcal{R}_{n}}$ と書いたときに, ツイストの 生成子が $S^{(n)} - S_{\mathcal{R}_{n}}$ に対応すると見ても構いません. ここで以下のような場の線形結合

$$\tilde{\phi}_k = \sum_{j=1}^n e^{2\pi i \frac{k}{n} j} \phi_j \tag{95}$$

が T_n , \tilde{T}_n の固有状態であることが分かります (k = 0, 1, ..., n - 1). 実際に

$$\mathcal{T}_{n}\tilde{\phi}_{k} = \sum_{j=1}^{n} e^{2\pi i \frac{k}{n}j} \phi_{j-1} = \sum_{j=0}^{n-1} e^{2\pi i \frac{k}{n}(j+1)} \phi_{j} = e^{2\pi i \frac{k}{n}} \sum_{j=0}^{n-1} e^{2\pi i \frac{k}{n}j} \phi_{j} = e^{2\pi i \frac{k}{n}} \tilde{\phi}_{k}$$
(96)

が得られます (T_n の行列表示を対角化してもよい). 同様にして \tilde{T}_n については $\tilde{T}_n \tilde{\phi}_k = e^{-2\pi i \frac{k}{n}} \tilde{\phi}_k$ が成り立ちます. この結果, 異なる k のモードは分離するので, 分配関数も異なる k の状態の直積で書けることになり, $T_n = \prod_{k=0}^{n-1} T_{n,k}$, $\tilde{T}_n = \prod_{k=0}^{n-1} \tilde{T}_{n,k}$ と書くと,

$$Z_n \propto \prod_{k=0}^{n-1} \langle \mathcal{T}_{n,k}(u) \tilde{\mathcal{T}}_{n,k}(v) \rangle_{\mathcal{L}^{(n)},\mathbb{C}}$$
(97)

が得られます.

共形場理論による解析 臨界系では特徴的な長さスケールがなくなり、スケール変換に 対して理論が不変であることが要請されます.特に時間1次元+空間1次元の系の変換 は、複素函数論の等角写像 (conformal mapping) とほとんど同じです.そこで時空に 対応した複素平面 w = x + ivtを導入し (v は低エネルギー励起の線形分散の傾き), $ds^2 = dwd\bar{w} = (vdt)^2 + dx^2$ が不変となることを要請する場の理論が共形場理論です.

エントロピーと場の曲率が関係あるので、空間の計量を反映する量から調べましょう. 一般相対論的にはストレス・テンソル $T^{\mu\nu} = 1/\sqrt{-g}(\delta S/\delta g_{\mu\nu})|_{g_{\mu\nu}=\eta_{\mu\nu}}$ がその定義通り計 量に依存するのですが、共形場理論の場合にはより重要な働きをします.ストレス・テン ソルは準プライマリー場なので、共形変換 $z \to w(z)$ に対する正則部分の変換式は

$$T(z) = \left(\frac{dw}{dz}\right)^2 T(w) + \frac{c}{12}\{w, z\}$$
(98)

となっており(反正則部分 \overline{T} も同様), 共形異常項 $(c/12)\{w,z\}$ を含んでいます. c は中 心電荷(central charge)で, 大まかには系の有効的な励起モード数に対応します. また,

$$\{w, z\} = \frac{w'''}{w'} - \frac{3}{2} \left(\frac{w''}{w'}\right)^2 \tag{99}$$

は複素函数論でも出てくる Schwartz 微分と呼ばれるもので (w' = dw/dz), 一葉の平坦 な C 上での一次分数変換 z = (aw + b)/(cw + d) (C \rightarrow C) ではゼロになりますが, \mathcal{R}_n 上では空間が歪んでいることを反映して有限の値を持ちます. 今 n 枚の複素平面を連結 して Riemann 面を作りましたので,

$$w = \left(\frac{z-u}{z-v}\right)^{1/n} \tag{100}$$

という変換を導入すると、 $\langle T(w) \rangle_{\mathbb{C}} = 0$ の関係が使えます. (z-u)/(z-v)の部分は、領域 $x \in A = (u, v)$ を $(0, \infty)$ に拡大するファクターです. この結果、

$$\langle T(z) \rangle_{\mathcal{R}_n} = \frac{c}{12} \{ w, z \} \tag{101}$$

が得られます.後は少し面倒ですが具体的に Schwartz 微分を実行すると,

$$\{w, z\} = \frac{1}{2} \left(1 - \frac{1}{n^2} \right) \frac{(u-v)^2}{(z-u)^2 (z-v)^2}$$
(102)

となり、n = 1の場合には確かにこの項の寄与はありません.更に部分分数に分解すると

$$\langle T(z) \rangle_{\mathcal{R}_n} = \frac{c}{24} \left(1 - \frac{1}{n^2} \right) \left\{ \frac{1}{(z-u)^2} - \frac{2}{u-v} \frac{1}{z-u} + \frac{1}{(z-v)^2} + \frac{2}{u-v} \frac{1}{z-v} \right\}$$
(103)

が得られます. この式を共形 Ward 恒等式 $(z_1 = (u, 0), z_2 = (v, 0))$

$$\langle T^{(n)}(z)\mathcal{T}_n(u)\tilde{\mathcal{T}}_n(v)\rangle_{\mathcal{L}^{(n)},\mathbb{C}} = \sum_{j=1,2} \left\{ \frac{\Delta_j}{(z-z_j)^2} + \frac{1}{z-z_j}\frac{\partial}{\partial z_j} \right\} \langle \mathcal{T}_n(u)\tilde{\mathcal{T}}_n(v)\rangle_{\mathcal{L}^{(n)},\mathbb{C}}$$
(104)

と比較します. ここで z は或る複素平面上にあり, 他の複素平面とは分離しているので,

$$\frac{\langle T^{(n)}(z)\mathcal{T}_{n}(u)\tilde{\mathcal{T}}_{n}(v)\rangle_{\mathcal{L}^{(n)},\mathbb{C}}}{\langle \mathcal{T}_{n}(u)\tilde{\mathcal{T}}_{n}(v)\rangle_{\mathcal{L}^{(n)},\mathbb{C}}} = n \langle T(z)\rangle_{\mathcal{R}_{n}}$$
(105)

と仮定してよいと考えられます. このとき二点相関関数とスケーリング次元が

$$\langle \mathcal{T}_n(u)\tilde{\mathcal{T}}_n(v)\rangle_{\mathcal{L}^{(n)},\mathbb{C}} \propto \frac{1}{|z_1 - z_2|^{2\Delta_n}|\bar{z}_1 - \bar{z}_2|^{2\bar{\Delta}_n}},$$
(106)

$$\Delta_n = \bar{\Delta}_n = \frac{c}{24} \left(n - \frac{1}{n} \right) \tag{107}$$

で与えられることが分かります.

以上より、領域 A の長さを |u-v| = L とすると、 $tr(\rho_A)^n$ は

$$tr\rho^n = c_n L^{-4\Delta_n} \tag{108}$$

となることが分かります. cn は規格化定数です. これを式(84)に代入すると最終的に

$$S_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \left\{ -\frac{c}{6} \left(n - \frac{1}{n} \right) \log L + \log c_n \right\} = \frac{c}{3} \log L + c'$$
(109)

という形が得られます. $c' = -\lim_{n \to 1+} (c'_n/c_n)$. 従って一次元臨界系ではエントロピーに 対数補正が現れます. また基底状態の波動関数から励起モードの情報である中心電荷を調 べることができるという特徴を持っています. このことからもエンタングルメント・エン トロピーは相関関数と類似の性質を備えていることが分かります.

以上の方法に基づいてエンタングルメントの系統的な研究が行われております. 例え ば,有限サイズ効果を調べるためには $w' = (L/2\pi) \log w$ という変換,有限温度の計算で は $w' = (\beta/2\pi) \log w$ という変換を行うことでエンタングルメント・エントロピーの式を 導出することができます.

図 3: 測地距離の計算

AdS/CFT 対応によるエンタングルメント・エントロピーの幾何学的導出 式 (109) を対応する重力理論の立場から幾何学的に導出します ⁴⁷⁻⁵⁴. この方法で得られるエント ロピーは特に「ホログラフィック・エンタングルメント・エントロピー (holographic entanglement entropy)」と呼ばれています. 重力理論におけるエンタングルメント・ エントロピーは, ブラックホールに対する Beckenstein-Hawking エントロピーを一般化 した笠-高柳の式

$$S_A = \frac{\operatorname{Area}(\gamma_A)}{4G_N^{d+2}} \tag{110}$$

が知られています ${}^{47-49}$. ここで Area (γ_A) は領域 A を囲む極小曲面 γ_A の面積, G_N^{d+2} は ニュートン定数です. 従って, Area (γ_A) を計算することが必要です. d = 1 の場合, AdS 計量における測地距離を計算することがそれに相当します.

AdS 空間の計量は $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$ に対して $x^1 = x$, $x^2 = z$ 及び $g_{11} = g_{22} = l^2/z^2$, $g_{12} = g_{21} = 0$ で与えられます. z は AdS 時空の動径座標, l は AdS 時空の曲率半径で す. 測地線の微分方程式は

$$\frac{d^2x^{\lambda}}{dt^2} + \Gamma^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt} = 0, \qquad (111)$$

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\tau} \left(\partial_{\mu} g_{\tau\nu} + \partial_{\nu} g_{\tau\mu} - \partial_{\tau} g_{\mu\nu} \right) \tag{112}$$

で与えられ,

$$\frac{d^2x}{dt^2} - \frac{2}{z}\frac{dx}{dt}\frac{dz}{dt} = 0,$$
(113)

$$\frac{d^2z}{dt^2} - \frac{1}{z} \left(\frac{dz}{dt} \frac{dz}{dt} - \frac{dx}{dt} \frac{dx}{dt} \right) = 0, \qquad (114)$$

と表わすことができます. この解は上半平面の半円

$$(x, z) = R(\cos\theta, \sin\theta) \tag{115}$$

となります. 但し $d\theta/dt = \sin \theta$ と置きました.

ここで二点間 X = (x, z) = (-R, a), Y = (y, z) = (R, a)の測地距離 D_{XY} を計算しま す. パラメータの定義は $R = L/2, \epsilon \le \theta \le \pi - \epsilon, (L/2) \sin \epsilon = a$ の通りです. 即ちの $a \to 0$ 極限で,境界の一次元系の長さが |x-y| = L となるようにパラメータを取ります. このとき D_{XY} は

$$D_{XY} = 2 \int_{\epsilon}^{\pi/2} \frac{l}{z} d\theta \sqrt{\left(\frac{\partial z}{\partial \theta}\right)^2 + \left(\frac{\partial x}{\partial \theta}\right)^2}$$
(116)

$$= 2l \int_{\epsilon}^{\pi/2} \frac{d\theta}{\sin\theta}$$
(117)

$$= 2l \int_{\epsilon}^{\pi/2} d\theta \frac{\sin \theta}{1 - \cos^2 \theta}$$
(118)

$$= l \log \left(\frac{1 + \cos \epsilon}{1 - \cos \epsilon} \right) \tag{119}$$

より

$$D_{XY} = l \log\left(\frac{\left(L + \sqrt{L^2 - (2a)^2}\right)^2}{(2a)^2}\right)$$
(120)

を得ます. また Weyl anomaly の計算から, d = 1の場合

$$c = \frac{3l}{2G} \tag{121}$$

で与えられることが知られています⁵⁵⁻⁵⁸. ここでもやはり曲率半径 *l* が場の励起 *c* に対応 しているということが見て取れます. CFT の計算では述べませんでしたが,面積則の係 数には一般には中心電荷をはじめとする**量子異常項(quantum anomaly)**が現れ,エ ントロピー流の強さを表わすことになっています.最終的に Area(γ_A) = D_{XY} としてエ ンタングルメント・エントロピーを評価すると,

$$S = \frac{c}{6} \log \left(\frac{\left(L + \sqrt{L^2 - (2a)^2} \right)^2}{(2a)^2} \right)$$
(122)

が得られます. a が格子長 (カットオフ) を与えるので, a が小さいとき,

$$S \sim \frac{1}{6}c \log\left(\frac{\left(L + \sqrt{L^2}\right)^2}{(2a)^2}\right) = \frac{c}{3}\log\frac{L}{a}$$
(123)

となり,式(109)が係数まで含めて導出できました.極小曲面の計算は高次元にも拡張 でき,その次元依存性が議論されています.結果の詳細は部分系の取り方に依存するので すが,主要項は $d \ge 2$ の場合に面積則を満たすことが知られています 47-49.従って空間 一次元系だけが特異的に対数発散を持っていることになります.

図 4: 一次元 Hubbard 模型のエンタングルメント・エントロピー $(\delta = 0)$.

DMRG による一次元 Hubbard 模型のエンタングルメント・エントロピーの計算 DMRG は一次元電子系の計算において非常に強力なツールです^{45,46}. DMRG では「部分系」「密 度行列」といったエンタングルメント・エントロピーの計算に欠かせない量がまさに理論 の根幹を決めている量であり、本稿での議論と非常に相性が良いのです. 数値計算法の詳 細は述べませんが、基本的には全系(スーパーブロックと呼びます)の波動関数から半分 (環境)を縮約して部分系であるシステムの密度行列を求め、その固有値が大きな固有ベ クトルで基底を近似します. この方法を応用すると、厳密に対角化が出来ないような大き なシステムも系統的に取り扱うことが出来ます. 具体的に相互作用系のエンタングルメン ト・エントロピーがどのように振舞うのか、DMRG による結果を見てみましょう. 図4 に一次元 Hubbard 模型(キャリア濃度は half-filling, $\delta = 0$)

$$H = -t \sum_{i,\sigma} \left(c_{i,\sigma}^{\dagger} c_{i+1,\sigma} + c_{i+1,\sigma}^{\dagger} c_{i,\sigma} \right) + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$
(124)

の基底状態波動関数に対するエンタングルメント・エントロピー S の計算例を示します. 境界は開放端条件で計算しています.開放端の場合にはエントロピーは S ~ $(c/6) \log L$ と スケールします. クーロン斥力 U の大きさを U = 4t, 10t, 40t と変化させ,システムサイ ズ L (ここではスーパーブロックのサイズを L としました)の対数に対して S をプロッ トしています. この場合,系は Mott 絶縁体で,実効的に Heisenberg 模型 $(J ~ 4t^2/U)$ になりますので c = 1 CFT で記述されます.システムの偶奇性が比較的強いので明確な フィッティングをしにくいのですが,L が大きな領域で S ~ $(1/6) \log L, c = 1$ に漸近して エンタングルメントで見る時空の幾何学構造とテンソル積波動関数

いくように見えます.開放端条件の場合には,境界によって誘起されるダイマー化の影響 があります.そこで数値計算の結果を見ると,システムサイズが奇数の場合にはダイマー になれない余ったスピンが存在し,その揺らぎの分だけエントロピーが高くなっていると 見ることができます.逆に言うと,励起モードの個性が直接反映されているようなので, 注意深く見れば色々な情報が得られそうです.

DMRG の精度と境界条件及び次元性 DMRG による数値計算は,開放端条件の場合に 精度がよいことは CFT から理解することができます.一次元臨界系に対してトランケー ション数の上限をボルツマンの式から見積もると,周期境界条件の場合は

$$m_{periodic} \le e^{S_A} = e^{(c/3)\log L + \gamma} = e^{\gamma} L^{c/3} \tag{125}$$

であるのに対し, 開放端条件では

$$m_{open} \le e^{S_A} = e^{(c/6)\log L + \gamma} = e^{\gamma} L^{c/6}$$
 (126)

となります. 即ち周期境界条件の場合には,開放端条件における状態数の e^{L/6} 倍の状態 を必要とします. このことが周期境界条件で DMRG 計算の効率があまりあがらない原因 の一端であると考えられます.

同様にして,DMRG による数値計算は空間一次元の場合に精度が高いが空間二次元以 上になると計算効率が落ちることも面積則から理解できます.即ち,非臨界系では

$$m_{nc} \propto e^{L^{d-1}} \tag{127}$$

となり、 d = 2 の段階で必要な状態が指数関数的な増加になってしまいます. 臨界系では

$$m_{critical} \propto e^{L^{d-1} \log L} = L^{L^{d-1}} \tag{128}$$

となり、更に強い発散が現れてしまいます.

これらの結果は,強相関電子系の問題で最も興味が持たれる二次元系を精密計算する場合において,単に DMRG の原理を拡張することは好ましいことではないことを示唆しています.このため,面積則を満たすような DMRG の拡張が必要になります.テンソル 積波動関数による変分法はこのような要請に基づくものです.

境界操作と双曲変形 以上のことから,DMRG においては出来るだけ開放端条件を用い たいのですが,それでも境界の効果は非常に大きいものです.例えば Dynamical DMRG で一粒子励起スペクトルや光学吸収スペクトルを計算すると,励起モードが端に溜まって しまい,その局在モードに起因する余分なピーク構造を出してしまいます.これを回避す るために,適切な boundary potential を導入して,励起モードが端に来ないように調整 することができます⁵⁹.例えば一次元 Hubbard 模型の光学吸収スペクトルの計算では,

電荷ギャップの直下に edge mode としてのホロン或いはダブロンの束縛状態が形成され ます.ポテンシャルの役割は,このモードのエネルギースケールを制御して光学ギャップ よりエネルギーの高い状態に持っていくことを意味します.この方法は非常に簡便で或る 程度の効果があるので便利なのですが,いささか作為的です.そこで,もう少し物理的な 背景のもとに相互作用を変動させて,境界条件や赤外発散をコントロールすることが詳し く調べられています⁶⁰⁻⁶⁵.これらはハミルトニアンを曲がった時空に定義することに対応 します.その計量の効果を取り込む見方は本稿の終盤の議論と関連しており,AdS/CFT 対応を経由して「ホログラフィック繰り込み群」というものに繋がっていきます.

具体的にはどういう操作をするかというと、例えば「双曲変形(Hyperbolic deformation)」と呼ばれる次の曲率

$$g_{j,j+1} = \cosh(j\lambda) = \frac{1}{2} \left(e^{j\lambda} + e^{-j\lambda} \right)$$
(129)

をホッピングや相互作用に導入するのです。例えば S = 1/2 Heisenberg 鎖であれば

$$H = J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} \to J \sum_{i} g_{i,i+1} \vec{S}_{i} \cdot \vec{S}_{i+1}$$
(130)

と変形します. ここで長さ L の格子のラベルは $-L/2 \leq j < L/2$ と取ります. つまり,

$$\lim_{j \to \pm \infty} \cosh j\lambda = \lim_{j \to \infty} \frac{1}{2} e^{|j|\lambda}$$
(131)

となって ($\lambda > 0$),中心は普通の Heisenberg 模型なのですが、中心から離れるにつれて 相互作用が非常に大きくなるので、これは境界に向かってエネルギースケールを粗くしよ うとする試みと考えていただいて構いません. S = 1/2 Heisenberg 模型は臨界系ですが、 以前に DMRG の計算例で示したように、有限系では境界に起因したダイマー化の影響が あります.このダイマー化が安定するような境界変形を施していることになります.この 変形に伴って実際に基底状態はダイマー化し、局所的な性質が強くなって、エントロピー が減少しながら一定値に漸近することが分かっています⁶².

双曲変形は双曲平面を表わす AdS 計量と深いかかわりがありそうだと皆さん推測する でしょう. AdS 計量との対応を確認するには,単位円盤 D 上のポアンカレ計量で考える のが都合がよいです. 即ち

$$ds^{2} = du^{2} + \left\{ (\cosh u)^{2} - 1 \right\} d\theta^{2} = du^{2} + (\sinh u)^{2} d\theta^{2}$$
(132)

という表示を用います. これより θ 方向の推進には $\sinh u \sim \cosh u(u \to \infty)$ という因子 がつくことが分かります. これで例えば u を空間座標, θ をユークリッド化された時間 座標だとして時間推進した場合を考えてみましょう ⁶³. $u \to \lambda u$ と書いて λ を大きく取 ると,時間推進の項が支配的となるので,時間推進演算子は

$$U(d\theta) \sim \exp\left(-\int duh(u)\cosh ud\theta\right)$$
 (133)

となることが期待されます. 但し通常はハミルトニアン密度 h(u) に空間微分 $\partial/\partial u$ が入っ ているので,これが直ぐに成り立つかどうかは自明ではないということには注意を要し ます. 以上のことから,相互作用を $\cosh u$ に従って変形することは,模型を AdS 時空上 に配するということのように思われます.このとき実は θ が繰り込みのフローパラメー タであり,この表示での時間推進が繰り込みの固定点を自然に作り出す働きを持っていま す.このときに元々臨界系だった Heisenberg 模型の中心電荷がどう変形されるかを見る ことが有益なのですが,これに関連した問題は後ほど議論することにしましょう.

3.6 エンタングルメント・エントロピーへの対数補正についての追記

ボーズ凝縮状態 エンタングルメント・エントロピーへの対数補正と長距離相関の関係につ いてボゾン系を用いてもう少し考えましょう⁶⁶.特に温度を下げてボーズ凝縮相に入ると, 系はマクロなコヒーレンスを獲得するので,その効果がエントロピーに反映されるはずで す.以下では相互作用のないボソン系を考えます.ハミルトニアンは $H = -\sum_{ij} t_{ij} a_i^{\dagger} a_j$ で,フーリエ変換 $b_k = \sum_j e^{-ikl} a_j / \sqrt{L}$ で対角化すると $H = \sum_k \epsilon(k) b_k^{\dagger} b_k$ となります. ボーズ粒子は絶対零度でボーズ・アインシュタイン凝縮して k = 0 の状態に落ち込みま す.そのため,N 粒子系の基底状態波動関数 $|\Psi_0\rangle$ は

$$|\Psi_0\rangle = \frac{1}{\sqrt{N!}} (b_0^{\dagger})^N |0\rangle = \frac{1}{\sqrt{N!}} \left(\frac{1}{\sqrt{L}} \sum_j a_j^{\dagger}\right)^N |0\rangle$$
(134)

と表わされます.

ここで部分系を構成するために、長さ L のシステムを二つの部分 ($\Gamma = A, B$) に分解 しましょう. 即ち $L = L_A + L_B$, $|0\rangle = |0\rangle_A \otimes |0\rangle_B$ とします. 次の演算子

$$a_{\Gamma}^{\dagger} = \frac{1}{\sqrt{L_{\Gamma}}} \sum_{j \in \Gamma} a_j^{\dagger}$$
(135)

を定義し、これを用いると |Ψ0) は

$$|\Psi_0\rangle = \frac{L^{-N/2}}{\sqrt{N!}} \left(\sqrt{L_A}a_A^{\dagger} + \sqrt{L_B}a_B^{\dagger}\right)^N |0\rangle$$
(136)

$$= \frac{L^{-N/2}}{\sqrt{N!}} \sum_{l=0}^{N} {}_{N}C_{l} \left(\sqrt{L_{A}}a_{A}^{\dagger}\right)^{l} \left(\sqrt{L_{B}}a_{B}^{\dagger}\right)^{N-l} \left|0\right\rangle_{A} \otimes \left|0\right\rangle_{B}$$
(137)

となるので,

$$\lambda_l = L^{-N}{}_N C_l L^l_A L^{N-l}_B, \qquad (138)$$

$$|l\rangle_{\Gamma} = \frac{1}{\sqrt{l!}} (a_{\Gamma}^{\dagger})^{l} |0\rangle_{\Gamma}$$
(139)

と置けば、 $|\Psi_0\rangle$ が以下のように Schmidt 分解の形に表わすことができます:

$$|\Psi_{0}\rangle = \sum_{l} \sqrt{\lambda_{l}} |l\rangle_{A} \otimes |N - l\rangle_{B}$$
(140)

これでエンタングルメント・エントロピーを計算する準備ができましたね.

以降では $L_A = L_B = L/2$ の場合を考察しましょう. このとき λ_l は x = N/2 - l (但 $U = N/2 \le x \le N/2$) を用いて

$$\lambda_{l} = {}_{N}C_{l}\frac{L_{A}^{l}L_{B}^{N-l}}{L^{N}} = {}_{N}C_{l}\left(\frac{1}{2}\right)^{N} = P_{1/2}\left(\frac{N}{2} - x, N\right)$$
(141)

と二項分布 $P_p(k,N) = {}_N C_k p^k (1-p)^{N-k}$ で表わされるのですが、N が十分大きいときに は正規分布に近似できて ($N! \sim N^N e^{-N} \sqrt{2\pi N}$ を使う)、規格化まで含めると

$$\lim_{N \to \infty} \lambda_l = \lambda(x) = \sqrt{\frac{2}{N\pi}} e^{-2x^2/N}$$
(142)

となります. 従ってエンタングルメント・エントロピーは

$$E \sim -\int_{-\infty}^{\infty} dx \lambda(x) \log \lambda(x) = \frac{1}{2} \log \left(\frac{\pi N}{2}\right) + \frac{1}{2}$$
(143)

となります.

以上から,自由フェルミオンでなくても,凝縮相に関わる巨視的な数のボーズ粒子が 存在する場合には,或る種の対数補正が出てくることが分かります.但し今の場合の対数 補正はシステムサイズではなくて粒子数の対数補正となっています.以前にも述べたよう に,このことは境界から測ってどの程度の領域まで相関(今の場合はマクロなコヒーレン ス)が発達しているかということが面積則の破れに繋がるという直観的な見方とコンシス テントであることがお分かりいただけるかと思います.

「境界」としてのフェルミ面 d 次元自由フェルミオン系のエンタングルメント・エント ロピーは以下のように振舞うことが解析的・数値的に確かめられています^{38-42,67}:

$$S = \frac{1}{3}CL^{d-1}\log L + BL^{d-1} + AL^{d-2} + \cdots, \qquad (144)$$

$$C = \frac{1}{4(2\pi)^{d-1}} \int_{\partial\Omega} \int_{\partial\Gamma} |n_x \cdot n_p| \, dA_x dA_p, \qquad (145)$$

ここで、 $\partial \Gamma$ と $\partial \Omega$ はそれぞれフェルミ面と考えている実空間領域の境界、 n_p と n_x はそ れらの境界に垂直な単位ベクトルです。面積則とその対数補正に関して先に述べたように、 先ずは情報をやり取りする「境界」を定義し、そこからの「低エネルギー励起」を特徴づ けることが上記の式を理解する上で重要です。ポイントは、その境界は一般には実空間上 に定義されなくても構わないということです。今の場合「フェルミ面」が境界に対応しま
す. d次元系のフェルミ面は d-1次元的曲面ですから、 L^{d-1} という因子はフェルミ面の 存在に起因していると言えます. 一方、フェルミ面からの低エネルギー励起は、フェルミ 速度 $\vec{v}_k = \vec{\nabla}_k \epsilon_k$ で特徴づけられます. このベクトルはフェルミ面に垂直 $\vec{v}_k \parallel \vec{n}_k$ なので、 低エネルギー励起は radial 励起と呼ばれていて、それらは独立な一次元的線形分散モー ドと考えることができます. これらのモードは伝搬方向が向き付けされている chiral 励 起です. 逆向きに伝搬するモードは、典型的にはフェルミ面の反対側の励起になります.

励起モードの数を数えてみましょう.実空間で特徴的な長さ L の部分系を考え,それ 以外の領域をトレースアウトします.このとき,波数空間或いはフェルミ面は,サイズ $(2\pi/L)^{d-1}$ のパッチに離散化・粗視化されます.単位面積当たりの格子点数は $(L/2\pi)^{d-1}$ となります.フェルミ面上の各点はフェルミオンが占有しているので,それらが全て log Lの補正に寄与します.従って,あとはフェルミ面上にこの格子点が幾つ並んでいるか数え 上げればよいということになります.例えば d=2の場合には Stokes の定理を使うと

$$\int_{\partial\Omega} dA_x \left(\vec{n}_x \cdot \vec{n}_k \right) \propto \int_{\partial\Omega} d\vec{A}_x \cdot \vec{\nabla}_k \epsilon_k = \int_{\Omega} d\vec{\Omega} \cdot \operatorname{rot}_x \left(\vec{\nabla}_k \epsilon_k \right)$$
(146)

と評価できて、 rot_x と ∇_k がキャンセルするので、経路 $\partial\Gamma$ に沿う線積分は分散をフェル ミ面上で足し上げる形になります。このため積分が励起モードの個数をカウントしている ことが分かります。実際に二次元正方格子などの具体的なモデルで確認してみるのもいい でしょう。励起モードの数がフェルミ面の形状に依存しているということは、場の歪みと 励起モードの対応の波数空間版と見ることもできます。

Jordan-Wigner 変換及びボソン化法による粒子の統計変換とエントロピー 量子多体 系の解析には幾つかの統計変換の方法が知られており,解析しやすいほうの統計粒子の模 型を取り扱うことが出来る場合があります.ここまで見てきたように,粒子の統計性はエ ンタングルメント・エントロピーの振舞いに大きく影響すると考えられるのですが,その 一方で統計変換は単に数学的な技巧ですので,エンタングルメント・エントロピーの振る 舞い自体が変化することはないはずです.この事情を先ずは Jordan-Wigner 変換に基づ いて確認しておきましょう.

Jordan-Wigner 変換は、一次元量子スピン系のキンクをフェルミオンで表わす変換で す. S = 1/2 XXZ スピン鎖

$$H = \frac{1}{2} J_{\perp} \sum_{i} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} \right) + J_{z} \sum_{i} S_{i}^{z} S_{i+1}^{z}$$
(147)

を考えましょう. ここでストリング演算子 K(i) を

$$K(i) = \exp\left(i\pi \sum_{j=1}^{i-1} f_j^{\dagger} f_j\right)$$
(148)

と導入します. K(i) は j = 1 から j = i - 1 までの全てのスピンを z 軸の周りに π 回転 するので, サイト i にキンクを一つ生成する働きがあります. スピン演算子を

$$S_i^+ = K(i)f_i^{\dagger}, S_i^- = f_i K(i), S_i^z = f_i^{\dagger} f_i - \frac{1}{2}$$
(149)

とすれば、演算子 f_i はフェルミオンの反交換関係 $\{f_i, f_j^{\dagger}\} = \delta_{ij}, \{f_i, f_j\} = 0$ を満たし、 ハミルトニアンを

$$H = -\frac{1}{2}J_{\perp}\sum_{i}^{N} \left(f_{i}^{\dagger}f_{i+1} + f_{i+1}^{\dagger}f_{i}\right) + J_{z}\sum_{i=1}^{N} \left(f_{i}^{\dagger}f_{i} - \frac{1}{2}\right) \left(f_{i+1}^{\dagger}f_{i+1} - \frac{1}{2}\right)$$
(150)

と実効的に *V-t* 模型で表わすことが出来きます $(J_{\perp} = 2t, J_z = V)$. $\sum_i S_i^z = \sum_i f_i^{\dagger} f_i - N/2 = M - N/2$ であることから, $S_{tot}^z = \sum_i S_i^z = 0$ の空間を考えると, フェルミオン 数 *M* は M = N/2 であることが分かります. 従ってフェルミオン系のキャリア濃度は half-filling です.

フェルミオン表現のハミルトニアンを眺めると分かるように,量子極限 ($J_z = 0$) では 模型は自由フェルミオンに変換されています. 従ってエンタングルメント・エントロピー は log L に比例します. 一方 $J_z > J_{\perp}$ の条件は V > 2t と表わすことが出来るため,こ の時には系は電荷秩序絶縁体となります. 電荷の励起ギャップが存在するため,エンタン グルメント・エントロピーのサイズ依存性は相関長を超えると頭打ちになります. これ らの事情は実際にスピン系自体の解析結果とコンシステントです. Ising 異方性が大きい $J_z \gg J_{\perp} > 0$ の場合には,系の両端を固定して (或いは周期境界条件にして) ドメイン・ ウォールを二つ生成すると,その励起エネルギー ΔE は全運動量 q の関数として

$$\Delta E = J_z - 2J_\perp |\cos q| \tag{151}$$

と書けることが簡単な計算から分かります. 従って明らかにスピン励起にギャップが存在 します. J_z の値が小さくなるに従ってギャップの値は次第に小さくなり, ちょうど等方的 な Heisenberg 模型 $J_z = J_{\perp} = J$ の場合には des Cloiseaux-Pearson モード

$$\Delta E = \frac{\pi J}{2} |\sin q| \tag{152}$$

が得られ、スピンギャップが閉じます。

Jordan-Wigner 変換による結果は、ボゾン化法を通しても見ることが出来ます. XXZ 模型の連続版は、量子 sine-Gordon 模型

$$H = \int dx \left\{ \left(\frac{J_{\perp}}{8\pi} + \frac{J_{z}}{4\pi^{2}} \right) (\partial_{x}\theta_{+})^{2} + \frac{J_{\perp}}{8\pi} (\partial_{x}\theta_{-})^{2} - \frac{J_{z}}{2(\pi\alpha)^{2}} \cos 2\theta_{+} \right\}$$
(153)

の形に表わすことが出来ます. Klein-Goldon 模型のエントロピーを思い出して, $\cos 2\theta_+ \sim 1 - \theta_+^2$ と近似すると, θ_+ モードの質量項 μ^2 に相当するのは $J_z/2(\pi\alpha)^2$ であり, J_z を大きくすると励起ギャップが開く傾向が強まるということは自然な帰結です.

3.7 トポロジカル秩序とエンタングルメント・エントロピー

ここまでは AdS/CFT 対応に基づいて,曲がった古典時空が量子系のエントロピーを 特徴づけることを幾つかの例を通して述べているのですが,微分幾何的・多様体的な要素 を持ち込む前に,系の位相構造が既にエントロピーに寄与する例がトポロジカル量子系で す.Laughlin 波動関数を議論する後の節でまた触れますが,系の位相構造は分数統計粒 子の存在などを通じて基底状態の縮退度を決める重要な因子です^{68,69}.エントロピーとい う量は幅広い幾何学的意味を包含していることが見えてきます.AdS/CFT 対応とは異な りますが,トポロジカル秩序のような量子相転移において,fidelity 計量と呼ばれる幾何 を調べて相転移を議論する方法もあります^{70,71}.

トポロジカル・エンタングルメント・エントロピー ギャップのあるトポロジカル秩序化 した二次元基底状態では,面積則の補正項として,そのトポロジーに対応した負のエント ロピー $S_{topo} = -\gamma(\gamma > 0)$ が現れることが知られています ^{72–79}:

$$S = \alpha L - \gamma + \cdots. \tag{154}$$

 S_{topo} は「トポロジカル・エンタングルメント・エントロピー」と呼ばれます。トポロジカル 秩序のように対称性の破れのない量子相転移を特徴づけるためには、基底状態の縮退度を 調べることも出来る場合がありますが,通常は分数統計粒子の存在やエッジ・モードなど, 系のダイナミクスを調べることが必要です。それに対してトポロジカル・エンタングルメ ント・エントロピーは、それらの情報を基底状態の波動関数から直接得られるという利点 を持っています. Stope はシステムサイズ L に依存しないことから, 位相的場の理論による 解析がなされており、 γ は量子次元(total quantum dimension) $D = \sqrt{\sum_{\alpha} d_{\alpha}^2} (\geq 1)$ を用いて $\gamma = \log D$ と特徴づけられます.本節で考えるような離散ゲージ理論において は、Dはゲージ群の要素数となります。例えばフィリングが $\nu = 1/q$ の量子ホール系で は $D = \sqrt{q}$ となります. 従って基底状態波動関数から励起モードの情報を間接的に予測 することも可能であり、トポロジカル量子系の解析にはエントロピーが非常に重要な役 割を果たすと言えます.またエントロピーは二次元系がトーラスと同相ではない場合に も調べられており、式(154)と同様の関係が成り立ちます。一方、基底状態の縮退度そ のものはジーナスに依存することが知られているので、これはトポロジカル・エントロ ピーが大域的な示量変数ではなくて、エッジ・モードの情報を強く引きずっている結果で あると見ることができます 68,69.実際にホログラフィック分配関数という見方によれば, エッジ・モードを記述するカイラル CFT の意味での edge entropy が定義できて、それ がトポロジカル・エントロピーに一致するということが示されます⁸⁰ ($S_{hulk} = \alpha L + \cdots$: トポロジカル絶縁体の場合にはギャップが空いているので,バルク部分は面積則に従う, $S_{edge} = S_{topo}$).またトポロジカル秩序とは異なりますが類似の現象としては、境界のあ る一次元臨界系においても,エントロピーに対して logg(g は基底状態の縮退度である

図 5: 蜂の巣格子と閉ループ構造の例:○(ストリングがいない)及び●(ストリングがいる)が q-bit を表わしており,同じリンク上に乗った q-bit 対はエンタングルしている(同じ色を取る).●で与えられる閉じたループ構造は,重複しない配置のみが正味のエントロピーに寄与する(連続変形して重なる図形は同じものとみなす).(a)及び(b)はそれぞれ異なる閉ループ構造を表わす.●でループを構成するとき,各サイトからは必ず偶数個の●が出ていることが分かる.

が、境界条件のユニバーサリティ・クラスに依存しており、一般には整数でない値をとれる)の補正が現れることが CFT の解析から知られております^{81,82}.

以降では特に詳しく解析されている Z2 ゲージ模型について議論します.

String-net 模型 S_{topo} の定義を蜂の巣格子(honeycomb lattice)上で具体的に見て行きましょう(図 5). 全系からグレーの色で表わされた部分系を切り出し,それを点線でA, B, C に分割します. 各分割 a = A, B, C, AB, BC, CA, ABC のエンタングルメント・エントロピー S_a を計算し, それらを次のように結合します:

$$S_{topo} = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{CA} + S_{ABC}$$
(155)

右辺から明らかなように、この定義では各分割の $S_a = \alpha L - \gamma$ の主要項、即ち面積則を 与える項 αL , が全て打ち消してしまいます.残るのは $S_{topo} = -\gamma$ だけです.従って、 この定義が有限のエントロピーを与えるとしたら、 γ は系のトポロジーに起因する量であ る可能性があります.即ち、各分割の形ではなくて、それらがどのように組み合わされて いるかということにエントロピーが依存するということです(文献によっては部分系への 分割の仕方や S_{topo} の定義に若干の違いがありますので注意して下さい).

トポロジカル秩序を基底状態に持つ模型としてよく知られているものには、ストリン グ・ネット模型(toric code とも呼ばれます)があります ^{37,83,84}. この模型では蜂の巣 格子の各リンク上にエンタングルした二つの q-bit (スピン 1/2) が乗っており ($|\phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$), ハミルトニアンは

$$H_{\mathbb{Z}_2} = \sum_p \prod_{i \in p} \sigma_i^x - \sum_v \prod_{j \in v} \sigma_j^z - \sum_l \sigma_{l_1}^z \sigma_{l_2}^z$$
(156)

で与えられます(通常はリンクに一つの q-bit が乗った模型を考えて、 $\sum_l \sigma_{l_l}^z \sigma_{l_2}^z$ の項も含 みませんが, *q*-bit 二つの模型では完全にエンタングルしているのでいつでも $|\alpha\alpha\rangle \rightarrow |\alpha\rangle$ とできて、基本的には同じ模型です。また格子は一般的には蜂の巣格子でなくても構い ません). ここで p は六角形のプラケット, v は各サイト, l は各リンクを表わします. $\prod_{i \in p} \sigma_i^x$ はプラケット演算子, $\prod_{j \in v} \sigma_j^z$ は星印演算子と呼ばれます. この模型の基底状態 は、リンクに乗ったストリング (q-bit pair) に対して全ての閉ループ構造 (ストリング・ ネット状態, $|\phi_{cl}\rangle$)を同じ重みで足し上げた状態 $|\Psi_{\mathbb{Z}_2}\rangle = \sum_{cl} |\phi_{cl}\rangle$ になります. 閉ループ 構造をとるということは、各サイトに着目したとき、●即ちストリングが偶数本出ている ということを意味します. ここで部分系を切り出したときに境界から n 本のリンクが出 ているクラスターを考えます.基底状態が閉ループ構造の重ね合わせで表わされるため, エントロピーに寄与するのは閉じたループの境界での配置の数になります。但し独立な境 界配置は,連続変形して一致するものの重複を除いて 2ⁿ⁻¹ だけあります.従ってどの閉 ループ配置も同じ重みの場合にはエントロピーが $S_{\alpha} = (n-1)\log 2$ となり, $S_{topo} = \log 2$ が得られます。繰り返しになりますが連続変形で互いに移り変わることのできる状態、即 ちトポロジカル不変なグラフ,のダブル・カウントを除く際に因子 -1 が現れていること に注意しましょう. この結果は、 \mathbb{Z}_2 ゲージ理論において D = 2 であることと対応してい ます.

Kitaev 模型 二次元蜂の巣格子上に定義されたスピン 1/2 の Kitaev 模型

$$H = -\sum_{x \text{ links}} J_x \sigma_i^x \sigma_j^x - \sum_{y \text{ links}} J_y \sigma_j^y \sigma_j^y - \sum_{z \text{ links}} J_z \sigma_i^z \sigma_j^z$$
(157)

も Z₂トポロジカル秩序の典型例です^{37,83}.この模型は相互作用が方向に依存していることが特徴であり、軌道擬スピン模型として強相関物性論の立場からも重要なものです⁸⁵. ハミルトニアンは次のプラケット演算子

$$W_p = \sigma_1^x \sigma_2^y \sigma_3^x \sigma_4^x \sigma_5^y \sigma_6^z \tag{158}$$

と可換 $[H, W_p] = 0$ です. 従って波動関数は H と W_p の同時固有状態となります.

蜂の巣格子の各サイトにおいて、4 次元 Fock 空間に作用する Majorana フェルミオン b^{α} , c (例えば $c_i^2 = 1$, $\{c_i, c_j\} = 0$)を用いて以下の演算子を定義します ($\alpha = x, y, z$):

$$\tilde{\sigma}^{\alpha} = ib^{\alpha}c \tag{159}$$

-423 -

図 6: スピンの Majorana 表現

これらは本当のスピン演算子より作用する空間が大きいことを覚えておくためにチルダ をつけておきます.物理的な空間 $|\Psi\rangle$ は射影演算子 $D = b^x b^y b^z c$ に対して $D|\Psi\rangle = |\Psi\rangle$ となるように選ばれます.何故かというと、 $\tilde{\sigma}^x \tilde{\sigma}^y \tilde{\sigma}^z = i b^x b^y b^z c = i D$ と $\sigma^x \sigma^y \sigma^z = i$ が成 り立つので、物理的空間において D は恒等演算子になるためです.

Majorana 表示の相互作用項は

$$\tilde{\sigma}_i^{\alpha} \tilde{\sigma}_j^{\alpha} = (ib_i^{\alpha} c_i)(ib_j^{\alpha} c_j) = b_i^{\alpha} b_j^{\alpha} c_i c_j = -iu_{ij} c_i c_j$$
(160)

と表わされます. ここでリンク演算子 $u_{ij} = ib_i^{\alpha}b_j^{\alpha}$ は互いに交換します. また $u_{ij}^2 = (ib_i^{\alpha}b_j^{\alpha})(ib_i^{\alpha}b_j^{\alpha}) = (b_i^{\alpha})^2(b_j^{\alpha})^2 = 1$ が成り立つので $u_{ij} = \pm 1$ となります. 従って Kitaev 模型は静的な Z_2 ゲージ場 u と結合した Majorana フェルミオン c の自由模型に変換で きます. ゲージ場に関しては string-net 模型と等価であることは明らかです. 従ってここ から $S_{topo} = -\log D$ が導かれます. 一方, フェルミオンの場に関しては, J_x, J_y, J_z の大 きさに応じて, ギャップのある相とギャップレス相 (Dirac フェルミオン) が現れ, エン タングルメント・エントロピーの主要項を与えます.

エンタングルメントとフラクタル的境界を持った面積則 トポロジカル秩序相のエンタン グルメントの主要項は,通常の面積則と少しだけ異なっています.例えばフェルミ面が情 報のやり取りの境界である場合には,基本的にはその形状が複雑なほど境界で多くのフェ ルミオンの往来があるので,エントロピーが増大する傾向にあります.一方,トポロジカ ル秩序相で境界 L が Hausdorff 次元 D を持つフラクタル曲線である場合,

$$S \le \frac{L}{D} < L \tag{161}$$

となり,エントロピーは境界の長さよりも低く抑えられます.S/L はフラクタル・エント ロピーと呼ばれます⁸⁶.これは厳密なフラクタル性の極限では,フラクタル曲線の長さが 発散することと関係しています.

3.8 Particle partitioning entanglement entropy

通常,エンタングルメント・エントロピーは,「空間的に分割された」二つの系の間の 情報のやり取りを記述します.即ち格子の集まりや連結した空間の領域を取り扱います. 一方,「particle partitioning entropy」と呼ばれるエントロピーを定義することが出 来ます^{87,88}.例えば波動関数が第一量子化で表現されている場合,部分系を導入する際の グルーピングは空間よりも粒子で行う方が自然です.即ち或る粒子のグループとそれ以外 の粒子のグループという分割を導入します.それら二つのグループに属する粒子は互いに 運動していて明確な空間分割をすることは出来ない場合にこの定義が有効です.

以下では簡単な系でエンタングルメント・エントロピーと粒子分割エントロピーの比較 を行いましょう.初めに3サイト(或いは3軌道)に2個のスピンレス・フェルミオン がいる系を考えます.サイトは α, β, γ とラベルされています.例えば波動関数を

$$|\psi\rangle = (a_1 c_{\alpha}^{\dagger} c_{\beta}^{\dagger} + a_2 c_{\beta}^{\dagger} c_{\gamma}^{\dagger}) |\text{vacuum}\rangle = a_1 |110\rangle + a_2 |011\rangle$$
(162)

と書きましょう. 初めに通常の空間分解のエンタングルメントを考えると, 例えばサイト α だけが部分系 *A* にあるとすると, *A* の取り得る状態は $|0\rangle$, $|1\rangle$ であるので密度行列は

$$\rho_A = \begin{pmatrix} |a_1|^2 & 0\\ 0 & |a_2|^2 \end{pmatrix}$$
(163)

となります. またサイト α, β が部分系 A にあるとすると,部分系にある粒子の状態は $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ の 4 通りが考えられて, 密度行列は

$$\rho_A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & |a_1|^2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & |a_2|^2 \end{pmatrix}$$
(164)

となります.

一方, particle partioning の場合は, 第一量子化の形式でフェルミオンの反対称性を考慮すると, 対応する波動関数は

$$|\psi\rangle = \frac{a_1}{\sqrt{2}} \begin{vmatrix} \phi_{\alpha}(1) & \phi_{\beta}(1) \\ \phi_{\alpha}(2) & \phi_{\beta}(2) \end{vmatrix} + \frac{a_2}{\sqrt{2}} \begin{vmatrix} \phi_{\beta}(1) & \phi_{\gamma}(1) \\ \phi_{\beta}(2) & \phi_{\gamma}(2) \end{vmatrix}$$
(165)

と表わされます.ここで粒子1と粒子2の間のエンタングルメントを考えると,例えば, 同じ粒子の状態で縮約を取った場合に,異なる軌道間の混成効果が入るということです. 具体的には密度行列が

$$\rho_A = \begin{pmatrix} |a_1|^2/2 & 0 & -a_1 a_2^* \\ 0 & 1/2 & 0 \\ -a_1^* a_2 & 0 & |a_2|^2/2 \end{pmatrix}$$
(166)

と表わされるので,通常の密度行列とは異なる固有値分布を持っています.部分系(今の 場合は例えば粒子 1 がいる状態) は $|\alpha\rangle$, $|\beta\rangle$, $|\gamma\rangle$ の状態が取れるので,行列の次元は 3 となっています.

4 行列積状態 (Matrix Product State, MPS)

だいぶウォーミングアップができてきましたね(ホントはかなりヘビーでしたね…). エンタングルメント・エントロピーという量の性質が段々見えてきたのではないでしょう か?.またエントロピーはとりわけ時空の幾何学的属性と関係がありそうだということを 御認識いだたければ幸いです.ここまでの議論では系の波動関数が顕になることは比較的 少なかったので、本節ではエントロピーや余剰次元と波動関数の関係を調べていくことに しましょう.特に系の持つエンタングルメント構造がどのように波動関数に反映されるべ きか、或いはもっと積極的に、面積則を反映した変分波動関数をどのように構成すればよ いかということについて議論を進めます.

4.1 行列積状態

ここでの目的は,非常に一般的な波動関数

$$|\psi\rangle = \sum_{\{s_j\}} c^{s_1 s_2 \cdots s_n} |s_1 s_2 \cdots s_n\rangle \tag{167}$$

の係数 *c*^{\$1\$2…\$n} を,系のエンタングルメント構造が反映した形(つまり面積則が満たされる形),そして願わくば数値計算がしやすい形,に分解しようということです.新たな自由度を導入してそこに量子揺らぎの効果を押し込める,というのが我々の基本的なスタンスでしたので,この係数を先ずは局所場あるいは平均場的に分解し,その代わり量子揺らぎを表わす新たな内部自由度を導入するということが目標です.

本節では先ず空間一次元の場合を考えましょう. 高次元化については次節で議論致しま す. 図7(a)のように,例えばスピンの相関が隣接サイト間だけで支配的な場合には

$$c^{s_1 s_2 \cdots s_n} \to c^{s_1}_{\alpha} c^{s_2}_{\alpha\beta} c^{s_3}_{\beta\gamma} \cdots c^{s_{n-1}}_{\psi\omega} c^{s_n}_{\omega} \tag{168}$$

という分解が適切であると考えられます(同じ文字が出てきたら縮約を取ることにしま す). ここで量子相関を表わす仮想的なインデックス $\alpha, \beta, \gamma, ...$ を行列の足と見ると,分 解後の係数 $c_{\alpha\beta}^{s_2}, c_{\beta\gamma}^{s_3}, ...$ は行列の積で表わされています. 従ってこのような状態は「行列積 状態(Matrix Product State, MPS)」と呼ばれます. 開放端の場合には端の $c_{\alpha}^{s_1}, c_{\alpha}^{s_1}$ のみベクトルで表わされていることに注意して下さい. 式(168)は局所的な分解ですが, 単純な局所近似やスカラー積への分解とは明らかに異なります. 行列の次元を高くすると 様々な相関を取り込む自由度が増えると期待できるでしょう. 境界が周期的である場合に は、全て行列を使って

$$c^{s_1}_{\omega'\alpha}c^{s_2}_{\alpha\beta}c^{s_3}_{\beta\gamma}\cdots c^{s_{n-1}}_{\psi\omega}c^{s_n}_{\omega\omega'} = tr\left(c^{s_1}c^{s_2}\cdots c^{s_n}\right) \tag{169}$$

と書くことが出来ます(図8参照).行列のトレースが含まれていますので、この波動関数は行列の巡回に対して不変で、これは系の並進対称性に対応しています.なお**周期境界**

図 7: MPS 状態(各リンク $\alpha, \beta, ...$ は相互作用或いはエンタングルメントを表わす):(a) スタンダードな形,(b) 次近接相互作用がある模型に対してはこの形の波動関数のほうが ベターかもしれません.但し変分計算はちょっとだけ大変になりそう.

条件を課していても、有限系の場合には行列自身は並進対称にはなりません. $c_{\alpha\beta}^{s_j}$ がサイト j に依存しているので,正確にはサイト j のインデックスをつけて $(c_j^{s_j})_{\alpha\beta}$ と書くべきです. 行列積のトレースがあくまで各基底の重みとなってそれが物理的に意味のある量となります. これは波動関数の特異値分解において特異値がユニークに決まってもユニタリー行列が一般には不定であることと対応関係にあります. また例えば次近接相互作用が無視できなくなると,図7(b)のように

$$c^{s_1 s_2 \cdots s_n} \to c^{s_1}_{\alpha\beta} c^{s_2}_{\alpha\gamma\delta} c^{s_3}_{\beta\gamma\epsilon\zeta} c^{s_4}_{\delta\epsilon\eta\theta} \cdots$$
(170)

という形が適切であろうと予想できます. この場合には添え字の数が増えてテンソルにな りましたね. 従って一般にはテンソル積状態(Tensor Product State, TPS) 或いは テンソルネットワーク状態(Tensor Network State, TNS)が現れます. 一次元系でも無 限レンジまで相互作用が延びれば,短距離相互作用のある二次元と同じようになるので 面積則が変わってくる可能性がありますが,詳細は MPS の高次元化の節で議論しましょ う. なお, DMRG は実は MPS 型波動関数の変分最適化法であることがよく知られてい ます⁸⁹⁻⁹¹. その見方を応用して,実時間発展や有限温度の系の計算を行うことも出来ま す^{92,93}. 逆に DMRG でも精度よく計算できないような複雑な相互作用系では(つまり長 距離相互作用のある系や内部自由度の大きい系),そもそも波動関数は式(168)より複 雑な構造をしていると見ることもできます.

以降では、MPS の具体的な構成例と面積則との関係について見て行きましょう.

図 8: 一次元周期境界条件における MPS 構造

4.2 MPS の構成法の具体例:スピンー重項状態

最も基本的な 2 サイト・スピン S=1/2 の反強磁性ハイゼンベルグ模型

$$H = J\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2}J\left(S_1^+S_2^- + S_1^-S_2^+\right) + JS_1^zS_2^z \tag{171}$$

の MPS 表現を作りましょう. 基底状態はシングレット

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right) \tag{172}$$

ですね. これを MPS で表わそうとしているわけですが,その前に,この状態は二つの電子がエンタングルしているために,平均場或いは局所近似に分解することは出来ないこと をくどいようですが確認しておきましょう.例えば或る直積状態(実効的には局所近似と 呼んでもよい)を

$$|\phi\rangle = \sum_{s_1} c_{s_1} |s_1\rangle \otimes \sum_{s_2} d_{s_2} |s_2\rangle$$
(173)

$$= \sum_{s_1, s_2} c_{s_1} d_{s_2} |s_1 s_2\rangle \tag{174}$$

$$= c_{\uparrow}d_{\uparrow} |\uparrow\uparrow\rangle + c_{\uparrow}d_{\downarrow} |\uparrow\downarrow\rangle + c_{\downarrow}d_{\uparrow} |\downarrow\uparrow\rangle + c_{\downarrow}d_{\downarrow} |\downarrow\downarrow\rangle$$
(175)

と書くと,これが一重項状態となる条件

$$c_{\uparrow}d_{\uparrow} = c_{\downarrow}d_{\downarrow} = 0, c_{\uparrow}d_{\downarrow} = \frac{1}{\sqrt{2}}, c_{\downarrow}d_{\uparrow} = -\frac{1}{\sqrt{2}}$$
(176)

を満たす係数の組が存在しないことは容易に確かめられます.従って式(173)では厳密 な波動関数である式(172)を表現しきれないことになります.そこで,エンタングルメ ントを回復するために,波動関数を「作為的に」以下のように表現するんでしたね(今の 場合は両方のサイトが端にきているので,*A*,*B*は行列ではなくてベクトルになります):

$$|\psi\rangle = \frac{1}{\sqrt{2}} \sum_{s_1, s_2=\uparrow,\downarrow} A^{s_1} B^{s_2} |s_1 s_2\rangle = \frac{1}{\sqrt{2}} \sum_{s_1, s_2} (a^{s_1} b^{s_1}) \begin{pmatrix} c^{s_2} \\ d^{s_2} \end{pmatrix} |s_1 s_2\rangle, \quad (177)$$

ここで A^{s_1} はサイト 1 上に定義された行ベクトル(スピン状態 s_1 に依存する), B^{s_2} は サイト 2 上に定義された列ベクトル(スピン状態 s_2 に依存する)で,

$$A^{\uparrow} = \begin{pmatrix} 1 & 0 \end{pmatrix}, A^{\downarrow} = \begin{pmatrix} 0 & -1 \end{pmatrix}, B^{\uparrow} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, B^{\downarrow} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(178)

と取ることができます(但しこの取り方は一意的ではありません).ベクトルの成分が仮 想的な内部自由度を表わしています.今の場合はベクトルですが,周期境界条件の場合に は行列になります.ここで自由なパラーメタは8個あるのに対し(2成分ベクトルが2種 類とスピンの添え字が2状態あり,合計で2³=8となります),拘束条件は

$$a^{\dagger}c^{\dagger} + b^{\dagger}d^{\dagger} = 0 \tag{179}$$

$$a^{\downarrow}c^{\downarrow} + b^{\downarrow}d^{\downarrow} = 0 \tag{180}$$

$$a^{\dagger}c^{\downarrow} + b^{\dagger}d^{\downarrow} = \frac{1}{\sqrt{2}}$$
(181)

$$a^{\downarrow}c^{\uparrow} + b^{\downarrow}d^{\uparrow} = -\frac{1}{\sqrt{2}}$$
(182)

の4つしかありません.残りの自由度は,ユニタリー変換で色々な組のベクトルが解に なり得る可能性を示しています.実際にユニタリー行列 U

$$U = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$
(183)

を導入して、

$$|\psi\rangle = \sum_{s_1, s_2} \left(\begin{array}{c} a^{s_1} & b^{s_1} \end{array} \right) U U^{-1} \left(\begin{array}{c} c^{s_2} \\ d^{s_2} \end{array} \right) |s_1 s_2\rangle = \sum_{s_1, s_2} \left(\begin{array}{c} \tilde{a}^{s_1} & \tilde{b}^{s_1} \end{array} \right) \left(\begin{array}{c} \tilde{c}^{s_2} \\ \tilde{d}^{s_2} \end{array} \right) |s_1 s_2\rangle \tag{184}$$

と変換する場合の不変性と等価です.

さて式(177)と式(173)を比べましょう.両方とも各サイト上に定義された局所的因 子の積で表現されており,形はそっくりですね.このため式(177)は一見すると局所近 似の印象を受けます.しかしながら式(177)の場合,A^{s1},B^{s2}はベクトルであるために ベクトルの成分という内部自由度を持っており,「掛けて足す」という内積操作が自然に 二つのサイト間の状態をもつれさせる効果を持っているのです.もう少し繰り返すと,式 (172)の波動関数はサイト1とサイト2の状態の単純な直積では表現できず,互いにエ ンタングルしています.このような非局所相関を式(177)のように内部自由度を持った 局所量の積に変換できるということが,ここで述べている理論の大きなポイントです.

4.3 Projected Entangled-Pair State (PEPS)

PEPS MPS に現れる行列積 $A_{\alpha\beta}^{s_j} A_{\beta\gamma}^{s_{j+1}}$ は,仮想的なインデックス β で最隣接スピン間 のエンタングルメントを表現して,それを物理的空間 s_j, s_{j+1} にマップする働きを持って います.従って波動関数の表現方法としては,先に仮想的なエンタングルメント対を各ボ ンド上に作っておいて,そのあとに物理的空間に射影するという見方も出来ます.この見 方は **Projected Entangled-Pair State (PEPS)** と呼ばれます ^{94–99}. PEPS を数学的 に表現するためには,まずボンド上に maximally entangled state

$$|\phi\rangle = \sum_{\alpha=1}^{\chi} \frac{1}{\sqrt{\chi}} |\bar{\alpha}\alpha\rangle \tag{185}$$

を導入します.一方の仮想自由度を縮約した時に,他方の仮想自由度の密度行列に対する エンタングルメント・エントロピーは $S = \log \chi$ となります.次にサイト上の二つの仮想 的自由度を物理空間に射影する演算子 (isometory と呼ぶ)

$$P_{M} = \sum_{s=1}^{d} \sum_{\alpha,\beta=1}^{\chi} A^{s}_{\alpha\beta} \left| s \right\rangle \left\langle \alpha \beta \right| \tag{186}$$

を導入します. これらを用いて MPS 波動関数は

$$|\psi\rangle = P_1 \otimes P_2 \otimes \cdots \otimes P_N |\phi\rangle^{\otimes N} \tag{187}$$

と表わされます(この最終的な波動関数に対するエントロピーの計算を行うためには、射 影演算子まで考慮する必要があるので、厳密にはエントロピーに補正項がつきます). χ が有限である場合には finitely correlated state と呼ばれていて、その場合には MPS 表現が波動関数をよく記述する方法となります.

Finite- χ scaling 以上のことから、一次元的 MPS では境界(点) でやりとりするエン トロピーが log χ 程度となります. 面積則の視点に立てば(面積則の破れも含めて)、非 臨界系の場合には $\chi \sim \xi$, 臨界系の場合には $\chi \sim L$ と選べば、MPS 変分波動関数が非 常に正確なものであるということになります. 一方、臨界現象は $L \to \infty$ で起こるので、 $\chi \sim L$ というのは原理的には臨界系を MPS で正確に表わすことはできないということ を示しています. 臨界系に対してもう少し正確に述べておくと、横磁場 Ising スピン系 $H = \sum_i (\sigma_i^x \sigma_{i+1}^x + \lambda \sigma_i^x)$ に対する無限系の半分に対するエントロピー S_χ の数値計算から

$$S_{\chi} \sim \frac{1}{6} \log \chi \tag{188}$$

という結果が得られています ($\lambda = 1$ の場合)¹⁰⁰. 1/6 の因子がつきますが, 確かに $\log \chi$ でスケールされるようです. 臨界現象の現実的な数値計算可能性を議論するためには, こ の因子の大きさも重要です. 開放端条件における CFT の結果と比較すると,

$$S = \frac{1}{6}\log\chi = \frac{1}{6}c\log\left(\frac{L}{2}\right) \tag{189}$$

より,

$$\chi = \left(\frac{L}{2}\right)^c \tag{190}$$

が得られます. 周期境界条件の場合には,部分系を切り出してくるのに二箇所の分割が必要ですが,CFTの計算の方の係数も2倍になるので $2 \times (1/6) \log \chi = (c/3) \log(L/2)$ となり,同様の結果が得られます. Ising 模型がc = 1/2 CFT で表わされることを考慮すると, $\chi = \sqrt{L/2}$ となります. この場合は数値計算に乗りそうです. 或いは逆に χ の値を定めると相関長が $\xi \sim \chi^2$ の程度となり,比較的相関がよく取り込まれるという見方もできます. 一般の場合には cの大きさに強く依存することになります.

4.4 MPS の繰り込み変換と面積則の関係

一次元量子系で MPS 或いは PEPS がよい表現である場合(「よい」という意味は, χ が比較的小さくてもよいということ)というのは, エンタングルメント・エントロピーが (対数補正のない) 面積則に従う場合です(逆に面積則に従う系がいつでも MPS で書け るかどうかというのは微妙な問題ですが¹⁰¹). このことは, MPS の繰り込み変換を行っ て, 固定点での性質を考えると理解できます¹⁰². 系の粗視化は次のブロック変換によっ て記述されます:

$$\sum_{\beta=1}^{\chi} A_{\alpha\beta}^{s_j} A_{\beta\gamma}^{s_{j+1}} = \tilde{A}_{(\alpha\gamma)}^{(s_j s_{j+1})} = \sum_{l=1}^{\min(d^2,\chi^2)} U_l^{(s_j s_{j+1})} \lambda_l V_{\alpha\gamma}^l,$$
(191)

ここで最後の式は特異値分解を施しました. (s_j, s_{j+1}) の次元と $\alpha\gamma$ の次元の小さい方が ゼロでない特異値の数を与えるので、和は $min(d^2, \chi^2)$ までとなります。特異値分解に現 れるユニタリー行列 $U_l^{(s_j s_{j+1})}$ は粗視化された自由度の局所ユニタリー変換なので、

$$A_{\alpha\gamma}^{\prime l} = \lambda_l V_{\alpha\gamma}^l \tag{192}$$

を粗視化後の新たな行列と見なすことができます. そうすると,新しい物理的自由度*l*は min(d^2, χ^2) に増加するものの,仮想的自由度の大きさは χ のままなので,繰り込みをし てもブロックとブロックの継ぎ目のエンタングルメント・エントロピーは $\log \chi$ に保たれ ます.添え字 $\alpha\gamma$ の次元が χ^2 にロックされているので,繰り込みを続けても*l*のサイズ は χ^2 で抑えられます.従って,対象となる系に適切な χ が有限である場合には,エンタ ングルメント・エントロピーが有限となり,面積則を満たします.d次元系の場合に一般 化すると,エントロピーは $\log \chi^{2^{d-1}} = 2^{d-1} \log \chi$ となります.ギャップのある系の場合に MPS が表現として適切であるのはこのような背景に基づいています. Haldane ギャップ を持つ VBS 状態 (MPS で書ける) に対して具体的なエントロピー計算が行われており, 有限系の場合には $\log \chi$ からの補正項がつくものの,サイズの増加に伴って補正項は急速 に減衰することが知られています.

4.5 MPS の数値的変分最適化

波動関数が MPS で書かれていることは,数値計算的には二重に意味があります.第一 に、局所量に分解されているため、各サイト上に定義された行列を逐次的に最適化するこ とができ、全基底を取り扱うことに比べれば逐次最適化の各回における計算機の負荷は 小さくて済みます.もう一つは、行列次元 χ を近似の度合を決めるパラメータにできる ことです.基本的には内部自由度を増やせば変分パラメータが増えていくわけですから、 MPS がより良い変分波動関数になることは明らかですが、この内部自由度は比較的小さ くても精度の高い基底エネルギーが得られるということが面積則の主張です.これは前節 でも述べたように、変分波動関数としてかなり特殊な形を既に仮定しているので、これで 系の大雑把な性質が既に捉えられていることを意味しています.勿論ここまで議論してき たように、それは共形場理論と面積則で保障されているわけです.以下では変分原理に基 づいて基底状態の波動関数に対する行列を求める方法を示します ⁹⁴⁻⁹⁹.一方、虚時間発 展の方法 $\lim_{r\to\infty} \exp(-H\tau) |\Psi_0\rangle$ も用いられています.これは時間依存 DMRG や有限温 度 DMRG との接続性のよい方法です.状況に応じて使い分けをしましょう.

先ずはシングレットの場合でプログラミングのイメージ作りをしましょう ここでは変分 原理に基づいて基底状態の波動関数に対する行列を求めます.即ち

$$\lambda = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \tag{193}$$

が最小になるように行列を最適化します. テンソル積のネットワークが複雑になっても下記 の方法は基本的には応用できます. 具体的にシングレット状態 $|\psi\rangle = \sum_{\alpha\beta} tr(A^{\alpha}B^{\beta}) |\alpha\beta\rangle$ の場合で最適化のプロセスを追ってみましょう. 今の場合はベクトルの内部自由度が 2 で 厳密なのですが,一般に χ としておきます. 波動関数が局所行列の積で表現されている 利点を生かして,始めに B を固定したときに A を最適化する方法を考えましょう. 先ず, ハミルトニアンの期待値を以下のように変形します:

$$\langle \psi | H | \psi \rangle = \sum_{\alpha, \beta, \gamma, \delta} \langle \gamma \delta | (\bar{A}^{\gamma} \bar{B}^{\delta}) H(A^{\alpha} B^{\beta}) | \alpha \beta \rangle$$
(194)

$$= \sum_{\alpha,i} \sum_{\gamma,j} \bar{A}_{j}^{\gamma} \left(\sum_{\beta,\delta} \langle \gamma \delta | \bar{B}_{j}^{\delta} H B_{i}^{\beta} | \alpha \beta \rangle \right) A_{i}^{\alpha}, \qquad (195)$$

ここで \bar{A}^{γ} は A^{γ} の複素共役を表します. ベクトル A_i^{α} はその成分(非物理的自由度)の 添え字 i と物理的自由度の添え字 α の両方を持っています. これらを一つのベクトルの 成分として並び替え,

$${}^{t}\vec{A} = \begin{pmatrix} A_{1}^{\uparrow} & A_{2}^{\uparrow} & \cdots & A_{\chi}^{\uparrow} & A_{1}^{\downarrow} & A_{2}^{\downarrow} & \cdots & A_{\chi}^{\downarrow} \end{pmatrix}$$
(196)

とします. このとき期待値は

$$\langle \psi | H | \psi \rangle = \vec{A}^{\dagger} \tilde{H} \vec{A} \tag{197}$$

と書くことができます. 但し $\vec{A^{\dagger}}$ は $\vec{A^{\dagger}} = t\vec{A}$ と定義し,

$$\tilde{H}_{(\gamma,j)(\alpha,i)} = \sum_{\beta,\delta} \langle \gamma \delta | \bar{B}_j^{\delta} H B_i^{\beta} | \alpha \beta \rangle$$
(198)

としました. ここで例えば $\tilde{H}_{(\gamma,j)(\alpha,i)}$ に現れる添え字 (γ,j) は, サイトの物理的自由度 $\gamma = \uparrow, \downarrow$ と内部自由度 $j = 1, 2, ..., \chi$ をひとまとめにした変数で, 有効ハミルトニアン \tilde{H} の行成分を表します. 同様に変分波動関数の規格化条件は

$$\langle \psi | \psi \rangle = \vec{A}^{\dagger} \tilde{N} \vec{A} \tag{199}$$

$$\tilde{N}_{(\gamma,j)(\alpha,i)} = \sum_{\beta,\delta} \langle \gamma \delta | \bar{B}_j^{\delta} B_i^{\beta} | \alpha \beta \rangle = \sum_{\beta} \bar{B}_j^{\beta} B_i^{\beta} \delta_{\alpha\gamma}$$
(200)

となります.以上から,要素をベクトル的に並べた行列 A は

$$\tilde{H}\vec{A} = \lambda \tilde{N}\vec{A} \tag{201}$$

という形の一般化固有値問題を解いて得られることになります.一般化固有値問題を解く アルゴリズムは,LAPACK などの数値計算ライブラリでは標準的にサポートされており, それを用いるのが便利でしょう.後はこれを解いて得られる A を与えて,今度は B につ いて同様の最適化を行います.このイタレーションを基底エネルギーが収束するまで繰り 返します.この方法はシステムサイズが増えても使える方法です.

 $\chi = 2$ の場合には厳密解が得られることが既に分かっているので、ここでは式(174) に対応する $\chi = 1$ の場合(エンタングルしていない場合)を逐次最適化で実際に解いて みて、 χ の変化がエンタングルメントの強弱に対応することを確認しましょう、実際に \tilde{H} と \tilde{N} を評価すると、

$$\tilde{N} = (|B^{\dagger}|^2 + |B^{\downarrow}|^2)E$$
(202)

$$\tilde{H} = \left(\sum_{\beta,\delta} \langle \uparrow \delta | \bar{B}^{\delta} H B^{\beta} | \uparrow \beta \rangle \sum_{\beta,\delta} \langle \uparrow \delta | \bar{B}^{\delta} H B^{\beta} | \downarrow \beta \rangle \right)$$
(203)

$$= \begin{pmatrix} \sum_{\beta,\delta} \langle \downarrow 0 | D | HD | \uparrow \beta \rangle & \sum_{\beta,\delta} \langle \downarrow 0 | D | HD | \downarrow \beta \rangle \rangle \\ \frac{J}{4} (|B^{\uparrow}|^{2} - |B^{\downarrow}|^{2}) & \frac{J}{2} \bar{B}^{\downarrow} B^{\uparrow} \\ \frac{J}{2} \bar{B}^{\uparrow} B^{\downarrow} & \frac{J}{4} (|B^{\downarrow}|^{2} - |B^{\uparrow}|^{2}) \end{pmatrix}$$
(204)

となるので(但し E は 2 × 2 の単位行列), 今の場合には一般化固有値問題が通常の固 有値問題に帰着され,

-433 -

$$\begin{pmatrix} \frac{J}{4}(|B^{\uparrow}|^{2}-|B^{\downarrow}|^{2}) & \frac{J}{2}\bar{B}^{\downarrow}B^{\uparrow} \\ \frac{J}{2}\bar{B}^{\uparrow}B^{\downarrow} & \frac{J}{4}(|B^{\downarrow}|^{2}-|B^{\uparrow}|^{2}) \end{pmatrix} \begin{pmatrix} A^{\uparrow} \\ A^{\downarrow} \end{pmatrix} = \lambda(|B^{\uparrow}|^{2}+|B^{\downarrow}|^{2}) \begin{pmatrix} A^{\uparrow} \\ A^{\downarrow} \end{pmatrix}$$
(205)

を解けばよいことになります.特性多項式 $|\tilde{H} - \lambda(|B^{\dagger}|^2 + |B^{\downarrow}|^2)E| = 0$ を解くと,最終的に $\lambda = \pm J/4$ が得られます.今の場合には (偶然ですが),もともと変分パラメータに依存した有効ハミルトニアン \tilde{H} から出発して,イタレーションを行わなくても収束解が得られました.これは量子揺らぎを含まない古典的なハミルトニアン $H = JS_1^z S_2^z$ における基底エネルギー -J/4と励起エネルギー J/4に対応しています.このように内部自由度 χ は隣接サイト間のエンタングルメントの強さを操作するパラメータであり,量子揺らぎがどれだけ適切に計算に反映されるかという目安を与えるものと言ってよいかと思います.

この先の計算に必要なテンソル代数のまとめ 今後の便宜上,例えばイジングハミルトニ アンを次のように表わします:

$$H = \sum_{i} \sigma_{1}^{0} \sigma_{2}^{0} \cdots \sigma_{i-1}^{0} \left(\sigma_{i}^{3} \sigma_{i+1}^{3} \right) \sigma_{i+2}^{0} \cdots \sigma_{L}^{0},$$
(206)

ここで各演算子は各サイトの基底に独立に演算するので、演算子積はテンソル積であることに注意して下さい.単位行列 σ_j^0 は j サイトの基底ベクトル $|s_j\rangle$ に作用してもベクトル $\sigma_i^3\sigma_{i+1}^3$ 以外の状態を変えないことを丁寧に書いたということです.例えば 4 サイト古典系(周期境界条件)であれば、

$$H = \sigma_1^3 \sigma_2^3 \sigma_3^0 \sigma_4^0 + \sigma_1^0 \sigma_2^3 \sigma_3^3 \sigma_4^0 + \sigma_1^0 \sigma_2^0 \sigma_3^3 \sigma_4^3 + \sigma_1^3 \sigma_2^0 \sigma_3^0 \sigma_4^3$$
(207)

となります.この表記を用いてハミルトニアンの期待値を作ると,

$$\langle \psi | H | \psi \rangle = \sum_{\{s'_j\}, \{s_j\}} tr \left(A_1^{s'_1} A_2^{s'_2} \cdots A_L^{s'_L} \right)^* tr \left(A_1^{s_1} A_2^{s_2} \cdots A_L^{s_L} \right) \times \langle s'_1 s'_2 \cdots s'_L | \sum_i \sigma_1^0 \sigma_2^0 \cdots \sigma_{i-1}^0 \sigma_i^3 \sigma_{i+1}^3 \sigma_{i+2}^0 \cdots \sigma_L^0 | s_1 s_2 \cdots s_L \rangle (208) = \sum_{\{s'_j\}, \{s_j\}, i} tr \left(A_1^{s'_1} A_2^{s'_2} \cdots A_L^{s'_L} \right)^* tr \left(A_1^{s_1} A_2^{s_2} \cdots A_L^{s_L} \right) \times \langle s'_1 | \sigma_1^0 | s_1 \rangle \cdots \langle s'_i | \sigma_i^3 | s_i \rangle \langle s'_{i+1} | \sigma_{i+1}^3 | s_{i+1} \rangle \cdots \langle s'_L | \sigma_L^0 | s_L \rangle . (209)$$

この式を簡単化するために、以下の演算規則を使います:

$$(A \otimes B)_{(l'l)(r'r)} = A_{l'r'}B_{lr}$$
(210)

$$tr(AB)tr(CD) = \sum_{m} (AB)_{mm} \sum_{a} (CD)_{aa}$$
(211)

$$= \sum_{m,n} A_{mn} B_{nm} \sum_{a,b} C_{ab} D_{ba}$$
(212)

$$= \sum_{m,a} \sum_{n,b} (A_{mn} C_{ab}) (B_{nm} D_{ba})$$
(213)

エンタングルメントで見る時空の幾何学構造とテンソル積波動関数

$$= \sum_{m,a} \sum_{n,b} (A \otimes C)_{(m,a)(n,b)} (B \otimes D)_{(n,b)(m,a)}$$
(214)

$$= tr \{ (A \otimes C) (B \otimes D) \}.$$
(215)

その結果,

$$\langle \psi | H | \psi \rangle = \sum_{\{s'_j\}, \{s_j\}, i} tr \left\{ \left(A_1^{s'_1 *} \otimes A_1^{s_1} \right) \left(A_2^{s'_2 *} \otimes A_2^{s_2} \right) \cdots \left(A_L^{s'_L *} \otimes A_L^{s_L} \right) \right\}$$

$$\times \langle s'_1 | \sigma_1^0 | s_1 \rangle \cdots \langle s'_i | \sigma_i^3 | s_i \rangle \langle s'_{i+1} | \sigma_{i+1}^3 | s_{i+1} \rangle \cdots \langle s'_L | \sigma_L^0 | s_L \rangle (216)$$

となりますが,

$$E_i^{\alpha} = \sum_{s_i', s_i} A_i^{s_i'*} \otimes A_i^{s_i} \langle s_i' | \sigma_i^{\alpha} | s_i \rangle$$
(217)

と定義される $m^2 \times m^2$ 行列 E_i^{α} を導入すると,

$$\langle \psi | H | \psi \rangle = \sum_{i} tr \left(E_1^0 E_2^0 \cdots E_i^3 E_{i+1}^3 \cdots E_L^0 \right)$$
(218)

書くことができます. ここで E_i^{α} を成分表示すると,

$$(E_i^{\alpha})_{(l'l)(r'r)} = \sum_{s_i',s_i} \left(A_i^{s_i'*} \otimes A_i^{s_i} \right)_{(l'l)(r'r)} \langle s_i' | \sigma_i^{\alpha} | s_i \rangle$$
(219)

$$= \sum_{s'_i,s_i} \left(A_i^{s'_i *} \right)_{l'r'} \left(A_i^{s_i} \right)_{lr} \left\langle s'_i \right| \sigma_i^{\alpha} \left| s_i \right\rangle$$
(220)

となるので、添え字の付け方に注意しましょう. 同様に

$$\langle \psi | \psi \rangle = \langle \psi | \sigma_1^0 \sigma_2^0 \cdots \sigma_L^0 | \psi \rangle = tr \left(E_1^0 E_2^0 \cdots E_L^0 \right)$$
(221)

なので,最終的に変分エネルギーは

$$\lambda = \frac{\sum_{i} tr\left(E_{1}^{0} E_{2}^{0} \cdots E_{i}^{3} E_{i+1}^{3} \cdots E_{L}^{0}\right)}{tr\left(E_{1}^{0} E_{2}^{0} \cdots E_{L}^{0}\right)}$$
(222)

$$= \frac{\sum_{i} tr\left(E_{i}^{3} E_{i+1}^{3} E_{i+2}^{0} \cdots E_{L}^{0} E_{1}^{0} E_{2}^{0} \cdots E_{i-1}^{0}\right)}{tr\left(E_{1}^{0} E_{2}^{0} \cdots E_{L}^{0}\right)}$$
(223)

を計算すればよいことになります.実際の最適化前に,初期値として与えた行列の組に対 する λ を計算しておくことは,どれだけよい出発点を選んでいるかの目安を与える意味 で必要な操作です.

イジング模型に対する具体的な変分計算のポイント 以降では、4 サイト古典スピン系の 場合で、具体的に変分の式を一般化固有値問題にマップする方法を与えます.一般化は容 易なので確かめてみてください.変分の式

$$\lambda tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{0}E_{4}^{0}\right) = \sum_{i} tr\left(E_{1}^{0}\cdots E_{i}^{3}E_{i+1}^{3}\cdots E_{L}^{0}\right)$$
(224)
$$= tr\left(E_{1}^{3}E_{2}^{3}E_{3}^{0}E_{4}^{0}\right) + tr\left(E_{1}^{0}E_{2}^{3}E_{3}^{3}E_{4}^{0}\right)$$
$$+ tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{3}E_{4}^{3}\right) + tr\left(E_{1}^{3}E_{2}^{0}E_{3}^{0}E_{4}^{3}\right)$$
(225)

から出発して,先ず $A_1^{s_1}$ を一般化固有値問題により最適化します.そのために上の式の 左辺から E_1^0 を下記のようにして引き出します:

$$tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{0}E_{4}^{0}\right) = \sum_{(l'l),(r'r)} \left(E_{1}^{0}\right)_{(l'l)(r'r)} \left(E_{2}^{0}E_{3}^{0}E_{4}^{0}\right)_{(r'r)(l'l)}$$
(226)

$$= \sum_{(l'l),(r'r)} \left(\sum_{s_1',s_1} A_1^{s_1'*} \otimes A_1^{s_1} \langle s_1' | \sigma_1^0 | s_1 \rangle \right)_{(l'l)(r'r)} \left(E_2^0 E_3^0 E_4^0 \right)_{(r'r)(l'l)} (227)$$

$$= \sum_{l'r'} \sum_{lr} \sum_{s_1's_1} \left(A_1^{s_1'*} \right)_{l'r'} \langle s_1' | \sigma_1^0 | s_1 \rangle \left(E_2^0 E_3^0 E_4^0 \right)_{(r'r)(l'l)} (A_1^{s_1})_{lr}$$
(228)

$$\equiv \sum_{l'r'} \sum_{lr} \sum_{s_1's_1} \left(A_1^{s_1'*} \right)_{l'r'} (N_{\text{eff}})_{(l'r')(lr)}^{s_1's_1} (A_1^{s_1})_{lr} \,. \tag{229}$$

上の式で現れた $nm^2 \times nm^2$ 行列 N_{eff} もやはり添え字に注意. ここで

$$(N_{\text{eff}})_{(l'r')(lr)}^{s_1's_1} = \langle s_1' | \sigma_1^0 | s_1 \rangle \left(E_2^0 E_3^0 E_4^0 \right)_{(r'r)(l'l)}.$$
(230)

s'₁(l'r') が同じ組, s₁(lr) が同じ組と見ます. ここまでと同様に

$$tr\left(E_{1}^{3}E_{2}^{3}E_{3}^{0}E_{4}^{0}\right) = \sum_{l'r'}\sum_{lr}\sum_{s_{1}'s_{1}}\left(A_{1}^{s_{1}'*}\right)_{l'r'}\left\langle s_{1}'\right|\sigma_{1}^{3}\left|s_{1}\right\rangle\left(E_{2}^{3}E_{3}^{0}E_{4}^{0}\right)_{(r'r)(l'l)}\left(A_{1}^{s_{1}}\right)_{lr} (231)$$

$$tr\left(E_{1}^{0}E_{2}^{3}E_{3}^{3}E_{4}^{0}\right) = \sum_{l'r'}\sum_{lr}\sum_{s_{1}'s_{1}}\left(A_{1}^{s_{1}'*}\right)_{l'r'}\left\langle s_{1}'\right|\sigma_{1}^{0}\left|s_{1}\right\rangle\left(E_{2}^{3}E_{3}^{3}E_{4}^{0}\right)_{(r'r)(l'l)}\left(A_{1}^{s_{1}}\right)_{lr} (232)$$

$$tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{3}E_{4}^{3}\right) = \sum_{l'r'}\sum_{lr}\sum_{s_{1}'s_{1}}\left(A_{1}^{s_{1}'*}\right)_{l'r'}\left\langle s_{1}'\right|\sigma_{1}^{0}\left|s_{1}\right\rangle\left(E_{2}^{0}E_{3}^{3}E_{4}^{3}\right)_{(r'r)(l'l)}\left(A_{1}^{s_{1}}\right)_{lr} (233)$$

$$tr\left(E_{1}^{3}E_{2}^{0}E_{3}^{0}E_{4}^{3}\right) = \sum_{l'r'}\sum_{lr}\sum_{s_{1}'s_{1}}\left(A_{1}^{s_{1}'*}\right)_{l'r'}\left\langle s_{1}'\right|\sigma_{1}^{3}\left|s_{1}\right\rangle\left(E_{2}^{0}E_{3}^{0}E_{4}^{3}\right)_{(r'r)(l'l)}\left(A_{1}^{s_{1}}\right)_{lr} (234)$$

従って,

$$(H_{\text{eff}})_{(l'r')(lr)}^{s'_{1}s_{1}} = \langle s'_{1} | \sigma_{1}^{3} | s_{1} \rangle \left(E_{2}^{3} E_{3}^{0} E_{4}^{0} + E_{2}^{0} E_{3}^{0} E_{4}^{0} \right)_{(r'r)(l'l)} + \langle s'_{1} | \sigma_{1}^{0} | s_{1} \rangle \left(E_{2}^{3} E_{3}^{3} E_{4}^{0} + E_{2}^{0} E_{3}^{3} E_{4}^{3} \right)_{(r'r)(l'l)}$$

$$(235)$$

を導入すると,

$$tr\left(E_{1}^{3}E_{2}^{3}E_{3}^{0}E_{4}^{0}\right) + tr\left(E_{1}^{0}E_{2}^{3}E_{3}^{3}E_{4}^{0}\right) + tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{3}E_{4}^{3}\right) + tr\left(E_{1}^{3}E_{2}^{0}E_{3}^{0}E_{4}^{3}\right)$$
$$= \sum_{l'r'}\sum_{lr}\sum_{s_{1}'s_{1}}\left(A_{1}^{s_{1}'*}\right)_{l'r'}\left(H_{\text{eff}}\right)_{(l'r')(lr)}^{s_{1}'s_{1}}\left(A_{1}^{s_{1}}\right)_{lr}$$
(236)

が得られます.ここで行列の成分 $(A_1^{s_1})_{lr}$ をベクトル的に一列に並べ変えます.添え字は s_1, l, r なので,ベクトルの次元は $d\chi^2$ です.異なる s_1 のブロックに区分けすると行列と の積の整合性がとりやすくなります.このベクトルを \vec{x} と書く.このとき

$$\lambda \vec{x}^{\dagger} N_{\text{eff}} \vec{x} = \vec{x}^{\dagger} H_{\text{eff}} \vec{x} \to \lambda N_{\text{eff}} \vec{x} = H_{\text{eff}} \vec{x} \tag{237}$$

が成り立ちます.ここまで何度も添え字の位置が変わっているので,付け替えの際に十分 注意が必要.

あとは一般化固有値問題

$$\lambda N_{\rm eff} \vec{x} = H_{\rm eff} \vec{x} \tag{238}$$

を解いて最低固有値を与える \vec{x} を求めれば,それが最適化された $A_1^{s_1}$ となります(一次 元から行列への並べ替えに注意しましょうね…).計算においては N_{eff} が正定値確定で あることが必要なので先ず通常の対角化を行い, N_{eff} の固有値が全て正かどうか確かめて おきます.また値が小さいと計算が不安定になる恐れがあるので,このデータは再規格化 が必要かどうか考慮するためにも使えます.

続いて $A_2^{s_2}, A_3^{s_3}, A_4^{s_4}, A_1^{s_1}, \dots$ の最適化を行い,エネルギーが収束するまで繰り返します. 例えば $A_3^{s_2}$ の最適化の際にはトレースの巡回不変性を用いて

$$tr\left(E_{1}^{0}E_{2}^{0}E_{3}^{0}E_{4}^{0}\right) = tr\left(E_{2}^{0}E_{3}^{0}E_{4}^{0}E_{1}^{0}\right)$$

$$\tag{239}$$

と変形し、これまでと同様にして A³² を引き出せばよいということになります.

計算結果:DMRG の計算機的特性との比較考察 実際の数値計算で計算機に負荷がか かるのは、大きく分けて行列の積を作る部分と一般化固有値問題の 2 か所です.しかし ながら一般化固有値問題は $d\chi^2 \times d\chi^2$ の行列を扱うため、厳密対角化に比べれば計算の メモリ的負荷は圧倒的に小さくなります.通常は Householder 法で処理することができ ます.その代わりにイタレーションで少しづつ行列の更新を行うので、細かな計算を数多 く行うことになります.従って例えば並列処理で高速化を狙う場合、一般化固有値問題を 並列化するよりはむしろ複数の行列を一度に最適化できるか考えることになりそうです. 但し、隣接サイト間のエンタングルメントを正しく取り扱うためには、異なる行列の最適 化は完全に独立に行うことはできないと考えられるため、最適化の順番などに工夫が必要 であると思われます.また MPS は DMRG と基本的には等価ですから、DMRG の収束 性とどのような対応関係にあるかも議論する必要があるでしょう.

図 9: 一般化固有値問題を用いた変分最適化の収束の様子:(a) Ising 鎖, (b) Heisenberg 鎖

図 9 は、周期境界条件を課した一次元 Ising 及び Heisenberg 模型 (S = 1/2)の基底エ ネルギー E_0/J に対する MPS 最適化の様子を示したものです.システムサイズは L = 40です. 横軸 40 という目盛が周期系一周分,つまり各サイトー回最適化を行った後の状態 です. 計算は全てランダムな初期行列から出発して行いました. Heisenberg 模型の場合 には、着目しているサイトの行列に対する一般化固有値問題を解いた後、古い行列を新し い行列に完全に置き換えています. 一方 Ising 模型の場合には、古い行列 20 %に新しい行 列 80 %を混ぜながらイタレーションを行いました. ここでは行列の内部自由度 χ を変え ながら、基底エネルギーの収束性を見ています. このシステムサイズでは、臨界系である Heisenberg 鎖の場合であっても $\chi = 8$ 程度で厳密対角化と比べて十分な収束度が得られ ています. $d\chi^2 = 2 \times 8^2 = 128$ ですから、 $d^L = 2^{40}$ より十分小さな次元となっています.

ここで収束のしかたに特徴があり,周期系のループー周目で大きくエネルギーの低下が 起こり,2~3周で完全に収束するという状況です.これは DMRG の有限系法における計 算の収束にも似ています.計算は全てランダムな初期行列から出発して行っていますが, 普遍的にこのような振る舞いが見られるのは,MPS がユニタリー変換で不変なためです. また Ising 鎖のように量子的相関がない系で χ を必要以上に多く取ると,MPS の行列で ゼロとなるべき成分が多くなってしまい,そこに誤差が蓄積することにより,収束までの イタレーション回数の増加や精度の悪化が見られます.逆に収束の様子を見て系の量子揺 らぎの性質を大雑把に把握することができます.

臨界系と Haldane ギャップ系の違いについて S = 1/2 と S = 1 の Heisenberg 模型に 対して基底エネルギーのシステムサイズ依存性を調べると、明らかに Haldane 予想に対 応した基底エネルギーの収束性が得られます. 図 10 に示すように、S = 1/2 の場合には L > 50 であってもまだサイトあたりの基底エネルギーは収束せず、一方の S = 1 の場合

図 10: Haldane gap の有無と収束性の違い: (a) S = 1/2 Heisenberg, (b) S = 1 Heisenberg. 数値データは $\chi = 8$, 周期系 3 周分のイタレーションを行った時点のものでスケーリング しました. (a) の実線は無限系の値へのガイドです.

には $L \sim 10$ で或る程度の収束が得られました. これは後者が Haldane ギャップを持っ ており、スピン相関が短距離であることを示唆しているように思います. S = 1の模型に 関しては VBS 模型を用いれば (本計算では $(\vec{S}_i \cdot \vec{S}_{i+1})^2$ の項を導入していません) L = 2で完全な収束が得られるものと思われます. ちなみに図 10(a) で有限サイズ・スケーリン グの値は $E_0/L \sim -1.77$ ですが (エネルギーは J/4 を単位として測っている), これは Bethe-Hulthen の厳密解 $4E/LJ = 1 - 4\ln 2 \sim -1.772$ に非常に近い値となっています.

量子数の制御についてここで考えている変分波動関数では、全てのスピン状態に関す る和を取ります.したがって最適化された波動関数は、エネルギー最低の部分空間に属し ています.変分最適化の結果として得られた状態を用いて全粒子数や全スピンを評価すれ ば、その期待値を決めることができます.しかしながら電子系のようにあらかじめ決めら れた粒子数の系を取り扱いたい場合には問題があります.なぜかというと、電子系の粒子 数をコントロールするためには化学ポテンシャルを導入する必要がありますが、必然的に グランドカノニカルアンサンブルを取り扱うことになって、粒子数の揺らぎを内在するこ とになります.そうするとモット転移の物理などを記述するのは非常に危ない橋を渡るこ とになるのではなかろうかと思ってしまいます.いい解決法があるでしょうか?フォーマ ルには、射影演算子もテンソル積で書けると良いのですが、通常、射影演算子は大域的拘 束条件だから、それを局所量の積に分解するのは物理的にイメージが湧かないので非常に 難しいのです.もう少し研究を進める必要がありそうです.

5 MPS の高次元化:テンソル積状態(Tensor Product State, TPS)

MPS の高次元への自然な拡張としてテンソル積状態(Tensor Product State, TPS) を導入しましょう ^{95-99,103-109}. この場合には, PEPS の考え方に従うと, 各ボンド上に は maximally entangled pair が導入されており, エンタングルメント・エントロピーは $S \sim N_{bond} \log \chi$ で与えられることになります. ここで $N_{bond} \sim L^{d-1}$ は部分系の境界で分 断されるエンタングルメント対の数を表わしており,自然に面積則を導くことになります. 但し TPS も MPS 同様, 臨界系の場合には $\chi \sim L$ となりますので, 非臨界系にむいた計 算ということになります. TPS を変分最適化して強相関電子系の色々な問題にアタック できるかということは目下の大きな問題の一つでもあります. とりわけ結晶構造に起因す る電子状態の個性は TPS に初めから内包されているというところが期待できるポイント です. 直ぐ扱いたくなるのはフラストレーションのある二次元系ですが, その場合には励 起モードのエネルギースケールがおそらく小さくなるので, 傾向としてはギャップレスに 近づいて, 利点と欠点が混在してしまいます. 時間があれば色々試したいのですが, これ は力のある学生さん向きの課題かなと思っています.

5.1 面積則を満たすような波動関数を探す

一般的な空間 d 次元の場合には、各サイト j 上から伸びるボンド数 z_j と等しい階数を もつテンソル $A_{m_1m_2\cdots m_{z_j}}^{s_j}$ を定義し(各変数 m_1, m_2, \dots は、それぞれ χ 自由度を持つとす る)、それらの積を作れば良い変分波動関数になっていることが期待されます、即ち、

$$|\psi\rangle = \sum_{\{s_j\}} C(\{A_j^{s_j}\}) |s_1 s_2 \cdots c_n\rangle, \qquad (240)$$

ここで C はテンソル $(A_j^{s_j})_{m_1m_2\cdots m_{x_j}}$ の縮約を取ることを意味します. これを「テンソル 積状態 (Tensor Product States, TPS)」と呼びます. テンソルの次元 χ は MPS の 場合と同様に非物理的な内部自由度です. しかしながら, テンソルの要素が変分パラメー タであると見なせば, やはり χ を系統的に増加することで変分波動関数の精度をコント ロールすることができると期待できるでしょう.

具体例で見てみましょう. 例えば図 11(a) に示した二次元正方格子 9 サイト系(開放 端条件)の場合の TPS は, 縮約の部分も略さずに丁寧に書くと

$$|\psi\rangle = \sum_{\{s_j\}} \sum_{a,b,\dots,l} A^{s_1}_{ab} A^{s_2}_{bcd} A^{s_3}_{ce} A^{s_4}_{efl} A^{s_5}_{dfgh} A^{s_6}_{agi} A^{s_7}_{ij} A^{s_8}_{hjk} A^{s_9}_{kl} |s_1 s_2 \cdots s_9\rangle$$
(241)

となります(ちょっと複雑ですね…). 各テンソルの添え字の付け方は, 図 11(b) に示したように, 最隣接サイト間でエンタングルメント対ができるように取ります.

- 440 -

図 11: 二次元正方格子(9 サイト)上の TPS 構造.(a) は各サイト上に定義されるテン ソルを表す.(b) はテンソルの添え字の付け方が最隣接サイト間でエンタングルメント対 ができるように取ることを意味する.●が非物理的内部自由度(χ次元)を表す.

図 12: TPS の構造と面積則との対応:非臨界系の面積則に合うようにエンタングルメント・ボンドが配置されている.即ち,点線で囲まれた領域 ($L = 4, L^2 = 16$) に対して,部 分系を区切ったことによって切れたエンタングルメント・ボンドの本数 $N_{bond} = 4L = 16$ が領域の長さを与えます.またそれによるエントロピー変化は $N_{bond} \log \chi$ となります.

図 13: 二次元三角格子(7 サイト)上の TPS 構造. (a) テンソル次元の定義. (b) 三角格 子上の反強磁性ハイゼンベルグ模型には幾何学フラストレーションがある.

TPS の構造と面積則に関しては,図 12 を見て頂くとよいでしょう.二次元正方格子 を考え,点線で囲まれた領域が部分系であるとします.このとき境界の長さは、ちょうど 点線で分断されたエンタングルメント対の数 $N_{bond} = 16$ となります.このためエントロ ピーは $S \sim N_{bond} \log \chi$ で与えられることになります.

5.2 幾何学的フラストレーションと面積則、テンソル次元

図 13 (a) は二次元三角格子上に定義された TPS です. 三角格子上のスピン系の問題 では「幾何学的フラストレーション効果」が起こります. 反強磁性相互作用するスピンを 三角格子上に配列すると,必ずエネルギーが上がってしまうボンドが現れ,古典的スピン 配列が不安定になります. これをフラストレーションと呼びます. 図 13(b) において, α ボンドはエネルギーを得していますが,「?」のサイトに↑,↓ どちらのスピンを並べても β ボンドか γ ボンドのいずれかがエネルギーを損してしまいます. この状況は中央のテ ンソル A_{bdfgik}^{s4} の階数の多さと関係しているように思われます. はじめに 4 番以外のサイ トで反強磁性相互作用が得するようにスピンを配列することはできても,4 番は必ずエネ ルギーが最低にはなりません. システムサイズを大きくすれば,4 番以外のサイトも更に 外側のサイトとの相互作用の結果,揺らぎが大きくなるのですが,その場合にはテンソル の足が 6 つに増えているわけです.

図 14 を用いて結晶構造の違い(その結果としてフラストレーションの強さの違い)が エントロピーに与える影響を調べましょう. どの場合も部分系は 16 サイト含んでいます. 面積則を場の理論的に求める場合には格子定数 $a \rightarrow 0$ の極限をとるので,格子模型とマッ チさせて領域を定義するには微妙な問題が残ってしまいますが,ここではさしあたり (a)

図 14: TPS の構造と面積則との対応, (a) 蜂の巣格子, (b) 正方格子, (c) 三角格子:いず れの結晶構造の場合も 16 サイトを含む部分系を切り出していますが, エンタングルメン トが切れるボンド数には大きな違いがあります.

~(c) のいずれも同じような大きさの部分系,即ち境界長さの等しい部分系を切り取った と考えることにします.このとき境界で分断されるボンド数は (a) 10, (b) 16, (c) 28 で, 特にフラストレーションのある三角格子 (c) で顕著に大きくなっています.従って境界で のボンド数 N_{bond} と境界長さ ∂A は厳密には異なる概念のようです.そこで

$$S \sim N_{bond} \log \chi = \partial A \frac{N_{bond}}{\partial A} \log \chi = \partial A \log \tilde{\chi}$$
 (242)

とすれば、 $\hat{\chi} = \chi^{N_{bond}/\partial A}$ がフラストレーションまで繰り込まれた局所揺らぎの強さと見ることができます。 N_{bond} が大きく従って揺らぎが強い系の $\hat{\chi}$ は非常に大きく、臨界系で χ が大きくなることと性質が似てきます。これはフラストレーションでエネルギースケールが小さくなることと対応しているように思われます。

5.3 AdS/CFT 対応との関係, でもちょっと警告

MPS, TPS の考え方を進めて行くうちに,我々の方向性は次第に AdS/CFT 対応の考え 方に近づいていることをお気づきでしょうか?AdS/CFT 対応の一般相対論側では,AdS 計量がエントロピーの大きさを決める要因です.これは或る意味,TPS において結晶構 造がエンタングルメント構造と大雑把な電子状態を決めることと同じようなことを言って います.逆に TPS の立場からは,例えばリング交換相互作用がある模型では,おそらく プラケット基底を取った方がベターですから,相互作用の型によっては結晶構造のみに頼 るのは万能な考え方とは言えないということも分かります.相互作用が強い場合は,どの ような電子状態が実現するかはむしろ物理的に連想しやすいので,そのような観点からの 変分波動関数の方がよく,おそらく変分モンテカルロ法の方が精度は出るでしょう.その 辺の「相補性?」にも注意しないと,近年の発展ばかりに目を奪われて,過去の重要な成 果を忘れてしまうことになりかねません.

6 量子多体系波動関数の多彩なエンタングルメント構造

ここまで述べてきたように、系の状態を適切に表現する変分波動関数は、背景に潜むエ ンタングルメント構造もまた適切に包含していることになります。従って、例えば超伝導 の BCS 状態や量子 Hall 系の Laughlin 状態のように良い変分波動関数が分かっている問 題を眺めてみると、この事情がよりはっきりすると期待できるでしょう。よく知られた波 動関数を MPS 或いは TPS で具体的に表わし直して、系が持つエンタングルメントの構 造を詳しく理解しようというのが本節の目的です。

6.1 VBS 状態

VBS 状態の PEPS 表現一番直接的な結果は勿論 AKLT (Affleck-Lieb-Kennedt-Tasaki) 模型の基底状態である VBS (Valence-Bond Solid) 状態ですね^{110,111}. VBS 状態は

$$H = \sum_{j=1}^{N-1} \left\{ \vec{S}_j \cdot \vec{S}_{j+1} + \frac{1}{3} (\vec{S}_j \cdot \vec{S}_{j+1})^2 \right\} + H_{boundary}$$
(243)

というスピンハミルトニアンの基底状態です. ここで \vec{S} は S = 1 のスピン演算子です. また境界条件は,周期的な場合に $H_{boundary} = \vec{S}_N \cdot \vec{S}_1 + (\vec{S}_N \cdot \vec{S}_1)^2/3$,開放端の場合に

$$H_{boundary} = \frac{2}{3} \left(1 + \vec{s}_0 \cdot \vec{S}_1 \right) + \frac{2}{3} \left(1 + \vec{s}_{N+1} \cdot \vec{S}_N \right)$$
(244)

となり、両端のサイト 0, N+1 でスピン 1/2 の演算子 s と結合します.

VBS 状態を作るためには、先ず S = 1のスピンを二つの S = 1/2のスピンで表わしま す. これらが MPS における非物理的自由度に対応します. そして隣接サイトの S = 1/2スピンでシングレットを作っておいて、各サイトを S = 1 に射影します (S = 1/2の4 状態から 3 状態への射影). ($\vec{S}_j \cdot \vec{S}_{j+1}$)²/3 という項の存在が、基底状態において S = 2とならない条件となっています. サイト k とサイト k+1の間で作るシングレットを $|\psi\rangle_{\bar{k}k+1} = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}$, サイト k 上の射影演算子を $P_{k\bar{k}}$ と表わすと、

$$|\text{VBS}\rangle = \bigotimes_{k=1}^{N} P_{k\bar{k}} |\psi\rangle_{\bar{0}1} |\psi\rangle_{\bar{1}2} \cdots |\psi\rangle_{\bar{N}N+1}$$
(245)

となります. 射影演算子 $P_{k\bar{k}}$ の添え字 k, \bar{k} は,それぞれサイト k 上に定義された左右の 擬スピン S = 1/2 を表わします. VBS 状態の構成法はちょうど PEPS と同じものです.

PEPS から MPS の構成法 シングレットを以下のように書きましょう^{112,113}:

$$|\psi\rangle = \sum_{a',a} d_{a'a} |a'a\rangle \tag{246}$$

図 15: VBS 状態

ここで a, a' = 0, 1 がスピンの↑, ↓を表わしており, $d_{01} = -d_{10} = 1/\sqrt{2}, d_{00} = d_{11} = 0$ と取ります.また物理空間への射影演算子 $P_{rr'}$ は

$$P = \sum_{i,a,a'} P^{i}_{aa'} \left| i \right\rangle \left\langle aa' \right| \tag{247}$$

と表わされます. 添え字 i はスピン 1 の状態で i = -1, 0, 1 と動きます. 射影演算子の性質として重要なものには $PP^{\dagger} = \hat{1}_3$ があります.

以上から VBS 状態は以下のように表わされます:

$$|\Psi\rangle = \sum_{\{a'_0, a_{N+1}, i\}} c_{a'_0 i_1 \cdots i_N a_{N+1}} |a'_0 i_1 \cdots i_N a_{N+1}\rangle, \qquad (248)$$

$$c_{a'_{0}i_{1}\cdots i_{N}a_{N+1}} = \sum_{\{a_{1}\cdots a'_{N}\}} P^{i_{1}}_{a_{1}a'_{1}} P^{i_{2}}_{a_{2}a'_{2}} \cdots P^{i_{N}}_{a_{N}a'_{N}} d_{a'_{0}a_{1}} d_{a'_{1}a_{2}} \cdots d_{a'_{N}a_{N+1}}.$$
 (249)

シングレットの係数 da'a を更に分解して

$$d_{a'a} = \frac{1}{\sqrt{2}} \sum_{\alpha=0}^{1} U_{\alpha}^{a'} V_{\alpha}^{a}$$
(250)

と表わすと都合がよく,そのためには U, V を例えば $U_0^0 = U_1^1 = V_0^1 = V_1^0 = -1$, $U_1^0 = U_0^1 = V_1^0 = V_0^1 = 0$ と選びます.その結果, MPS の行列 A^i は以下で与えられます:

$$A^{i}_{\alpha\beta} = \frac{1}{\sqrt{2}} \sum_{a,a'} P^{i}_{aa'} V^{a}_{\alpha} U^{a'}_{\beta}.$$
 (251)

ここで行列 Pian を対角化するユニタリー変換 Qi を導入して

$$V_{\alpha}P^{i}U_{\beta} = \left\{VQ^{i}\right\}\left\{(Q^{i})^{-1}P^{i}Q^{i}\right\}\left\{(Q^{i})^{-1}U\right\} = \tilde{V}^{i}\tilde{P}^{i}\tilde{U}^{i}$$
(252)

とすれば特異値分解となるので,Schmidt 分解の式(48)より,射影演算子の固有値がエ ンタングルメントの強さを決めていることになります.

エントロピーと相関関数の対応関係 ここで $\chi = 2$ (A^i は 2 × 2 行列) であるので, エンタングルメント・エントロピーは $S \sim \log 2$ となります. 詳しくは $S_L = \log 2 - \log \{1 + (-1/3)^L\}$ となることが分かっています ¹¹². これと VBS 状態におけるスピン相 関関数 $\langle S^z(0)S^z(L) \rangle = (4/3)(-1/3)^L$ を比較すると $e^{-S_L} \propto \langle S^z(0)S^z(L) \rangle$ となり,以前に CFT の計算で得た式 (94) と類似の形が得られます. 今の問題は励起ギャップを持つ系 を取り扱っていますが,基本的に S_L は相関関数の対数に相当しており、特に長距離の振 る舞いを詳細に調べることに向いている量であるようです.

物理的空間の取り方の任意性と仮想自由度の大きさについて ある波動関数が与えられ たときに MPS の表現が一意的かどうかという保証はないのですが,エンタングルメン トを表現する上で最も重要な仮想次元の大きさは不変に保たれるはずです.この事情を VBS を用いて考えましょう.まずはじめに 2 サイト問題を考えます.各サイト上に行列 A^{α} (但し $\alpha =\uparrow\uparrow,\uparrow\downarrow,\downarrow\uparrow,\downarrow\downarrow$ と取って, $\uparrow\downarrow,\downarrow\uparrow$ の項は対称化しないことにします)を定義 する必要があるのですが,空間一様かつ周期境界条件(両端のスピン 1/2 が一重項を組 む)の解を仮定して,行列積波動関数を

$$|\text{VBS}\rangle = \sum_{\alpha,\beta} tr\left(A^{\alpha}A^{\beta}\right) |\alpha\beta\rangle$$
(253)

と書きます. ここで基底 $|\alpha\beta\rangle$ は 16 通りの取り方があるので,係数に対する条件も同じ 数だけあることになります. この場合,行列 A^{α} を 2×2 と取れば,未知パラメータであ る行列要素の数が全部あわせて 16 となります. そこでサイト 1 の右側スピンとサイト 2 の左側スピンがシングレットを組むような行列を探すと

$$\begin{pmatrix} -|\downarrow\uparrow\rangle & -|\downarrow\downarrow\rangle \\ |\uparrow\uparrow| & |\uparrow\downarrow\rangle \end{pmatrix} \begin{pmatrix} -|\downarrow\uparrow\rangle & -|\downarrow\downarrow\rangle \\ |\uparrow\uparrow| & |\uparrow\downarrow\rangle \end{pmatrix} = \begin{pmatrix} |\downarrow\rangle|\uparrow\downarrow-\downarrow\uparrow\rangle|\uparrow\rangle & |\downarrow\rangle|\uparrow\downarrow-\downarrow\uparrow\rangle|\downarrow\rangle \\ -|\uparrow\rangle|\uparrow\downarrow-\downarrow\uparrow\rangle|\uparrow\rangle & -|\uparrow\rangle|\uparrow\downarrow-\downarrow\uparrow\rangle|\downarrow\rangle \end{pmatrix} (254)$$

であり,真ん中のシングレットを取り除けば,積を作る前の行列に戻りますので,この行 列は任意の長さの系にも対応します.また右辺のトレースを取れば端のスピンも確かにシ ングレットを組むことが分かります.このことから行列を

$$A^{\uparrow\uparrow} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A^{\uparrow\downarrow} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, A^{\downarrow\uparrow} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, A^{\downarrow\downarrow} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$
(255)

と取り、波動関数を

$$|\text{VBS}\rangle = \sum_{\{\alpha_j\}} tr \prod_{j=1}^N A^{\alpha_j} |\alpha_1 \alpha_2 \cdots \alpha_N\rangle$$
(256)

と書けばよいことが分かります.この表現の場合,物理的自由度は3ではなくて4ですが,このような変化があっても仮想自由度の次元2は変化しないようです.

6.2 BCS 波動関数

BCS 波動関数は Cooper pair の凝縮状態ですので,以前議論したボーズ凝縮の場合と 同様,系全体のコヒーレンシーがエントロピーに現れると期待されます. BCS 状態は以 下のように表現されます:

$$|\text{BCS}\rangle = \prod_{\vec{k}} (u_{\vec{k}} + v_{\vec{k}} c^{\dagger}_{\vec{k}\uparrow} c^{\dagger}_{-\vec{k}\downarrow}) |0\rangle$$
(257)

- 446 -

ここで

$$|v_{\vec{k}}|^2 = 1 - |u_{\vec{k}}|^2 = \frac{1}{2} \left(1 - \frac{\epsilon_{\vec{k}}}{\sqrt{\epsilon_{\vec{k}}^2 + \Delta_{\vec{k}}^2}} \right)$$
(258)

であり、 $\epsilon_{\vec{k}}$ はバンド分散、 $\Delta_{\vec{k}}$ は超伝導ギャップ、 $u_{\vec{k}}$ の項は波数 \vec{k} ・スピン↑と波数 $-\vec{k}$ ・スピン↓の二つの電子が共にいない状態、 $v_{\vec{k}}c^{\dagger}_{\vec{k}\uparrow}c^{\dagger}_{-\vec{k}\downarrow}$ の項は二つの電子が共にいる状態を表します.

ところで、 |BCS) は以下の形に書けるでしょうか?

$$BCS\rangle \to \prod_{\vec{k}} (\alpha_{\vec{k}} + \beta_{\vec{k}} c^{\dagger}_{\vec{k}\uparrow}) (\gamma_{\vec{k}} + \delta_{\vec{k}} c^{\dagger}_{-\vec{k}\downarrow}) |0\rangle$$
(259)

もうご理解いただけていると思いますが、これは不可能ですね、なぜならば、

$$\alpha \gamma \neq 0, \alpha \delta = 0, \beta \gamma = 0, \beta \delta \neq 0 \tag{260}$$

という条件を満たす $\alpha, \beta, \gamma, \delta$ の組が存在しないからです. つまり $|BCS\rangle$ を一電子状態の 直積に書き下すことはできません. 従って,二つの電子がエンタングルしていることにな ります. それでは,具体的にエンタングルメント・エントロピーを計算してみましょう. BCS 状態の場合には,残念ながらシステムと環境という区分けが明確にできないので,波 数 \vec{k} ・スピン \uparrow を持つ電子にとっての対凝縮に関わるエントロピーとして,

$$S_{\vec{k}}(T) = -|u_{\vec{k}}|^2 \log |u_{\vec{k}}|^2 - |v_{\vec{k}}|^2 \log |v_{\vec{k}}|^2$$
(261)

という量を導入するのが先ずは妥当でしょう. これも particle partitioning エントロピーの 一例と言えるかもしれません. ここで注意を喚起するために, エントロピーが温度 T に依 存していることを明記しました. 即ち, $T > T_c$ で超伝導ギャップが消滅すると $|u_{\vec{k}}|^2 = 1$ 及 び $|v_{\vec{k}}|^2 = 0$ となるため, $S_{\vec{k}}(T > T_c) = 0$ が得られます. 一方, 超伝導ギャップが大きい極限 では (低温を想定しています), $|u_{\vec{k}}|^2 = |v_{\vec{k}}|^2 = 1/2$ となるため, $\lim_{\Delta_{\vec{k}}/\epsilon_{\vec{k}}\to\infty} S_{\vec{k}}(T) = \log 2$ となります. つまり温度を下げて対凝縮が支配的になると, 対相関の情報量を表わすエン トロピーが大きくなります.

6.3 Laughlin 波動関数

量子 Hall 系のエンタングルメント・エントロピーに関連した話題としては大きく分け て二つあります¹¹⁴⁻¹²⁰.一方は,分数統計粒子の存在とトポロジカル・エンタングルメン ト・エントロピー,他方は強磁場下の二次元系を一次元的な手法である DMRG で解析で きることのテンソル積表現からの理解を深めることです.

分数量子統計とトポロジカル・エンタングルメント・エントロピーに関する考察 一般的 に議論するのは難しいので,ここでは二粒子の場合を考察しましょう.トポロジカル・エ ンタングルメント・エントロピーは面積則の項とは独立でサイズに依存していないので, このような簡単化であっても問題の本質的な部分は見ることができると期待できます(但 し本当は考える領域が相関長より大きくないとマズイ).

充填率が $\nu = 1/m$ (m > 1)の場合, Laughlin 波動関数は

$$\psi_m(z_1, z_2) = (z_1 - z_2)^m \exp\left\{-\frac{1}{4}\left(|z_1|^2 + |z_2|^2\right)\right\}$$
(262)

$$= \sum_{k=0}^{m} (-1)^{k} {}_{m}C_{k} z_{1}^{m-k} z_{2}^{k} \exp\left\{-\frac{1}{4} \left(|z_{1}|^{2} + |z_{2}|^{2}\right)\right\}$$
(263)

$$= \sum_{k=0}^{(m-1)/2} (-1)^k {}_m C_k \left(z_1^{m-k} z_2^k - z_1^k z_2^{m-k} \right) \exp\left\{ -\frac{1}{4} \left(|z_1|^2 + |z_2|^2 \right) \right\} (264)$$

と表わされます. ここで z = x + iy は二次元座標を表わします. 一粒子の基底

$$f_n(z) = \frac{1}{\sqrt{\pi 2^{n+1} n!}} z^n \exp\left(-\frac{1}{4}|z|^2\right)$$
(265)

(n = 0, 1)を導入し、第二量子化 $\langle z | a_n^{\dagger} | 0 \rangle = f_n(z)$ で書くと、規格化まで含めて

$$|\psi_m\rangle = \frac{1}{2^{(m-1)/2}} \sum_{k=0}^{(m-1)/2} \sqrt{{}_m C_k} a^{\dagger}_{m-k} a^{\dagger}_k |0\rangle$$
(266)

と表わすことができます、ここから一粒子状態を縮約したときのエントロピーは

$$S = -\log 2 - 2^{m-1} \sum_{k=0}^{(m-1)/2} {}_{m}C_{k} \log \left(2^{-(m+1)}{}_{m}C_{k}\right)$$
(267)

と表わすことが出来て、例えば m = 3 の場合には

$$S = \log 2 - \frac{1}{2} \log \sqrt{3}$$
 (268)

が得られます.確かに log D に相当する項が現れることが分かります.

Particle partitioning entropy (N 粒子, $\nu = 1$) 初めに充填率が $\nu = 1$ の場合の Laughlin 波動関数について考えます:

$$\Psi_1(z_1, z_2, \dots, z_n) = \frac{1}{\sqrt{n!}} \sum_{a_1, a_2, \dots, a_n = 0}^{n-1} \epsilon^{a_1 a_2 \cdots a_n} \phi_{a_1}(z_1) \phi_{a_2}(z_2) \cdots \phi_{a_n}(z_n)$$
(269)

と表わされます. ϵ は n 次元の完全反対称テンソルで,符号は $\epsilon^{0,1,\dots,n-1} = -1$ と約束します. 一粒子の基底は前節と同様

$$\phi_a(z_i) = \frac{1}{\sqrt{\pi a!}} z_i^a e^{-|z_i|^2/2} \tag{270}$$

で定義されています (a = 0, 1, ..., n - 1).

初めに状態 $\Psi_1(z_1, z_2, ..., z_n)$ における k 粒子系の particle partioning entanglement entropy を調べましょう. 対応する密度行列は以下のように表わされます:

$$\rho_{k,n} = \int dz_{k+1} dz_{k+2} \cdots dz_n \Psi_1^*(w_1, w_2, ..., w_k, z_k, z_{k+1}, ..., z_n) \Psi_1(z_1, z_2, ..., z_n)$$
(271)

一粒子基底の直交性を考慮すると、上の式は

$$\rho_{k,n} = \frac{1}{n!} \sum_{a,b,c} \epsilon^{a_1 a_2 \cdots a_k c_{k+1} c_{k+2} \cdots c_n} \epsilon^{b_1 b_2 \cdots b_k c_{k+1} c_{k+2} \cdots c_n} \phi_{a_1}^*(w_1) \phi_{b_1}(z_1) \cdots \phi_{a_k}^*(w_k) \phi_{b_k}(z_k)$$
(272)

と表わされます.この密度行列は k 個の粒子に対する以下の直交基底の組を導入することで対角的な形に表わすことが出来ます;

$$\Phi_c(z) = \frac{1}{\sqrt{k!}} \epsilon^{a_1 a_2 \cdots a_k c_{k+1} c_{k+2} \cdots c_n} \phi_{a_1}^*(z_1) \phi_{a_2}(z_2) \cdots \phi_{a_k}(z_k)$$
(273)

ここで $z = (z_2, z_1, ..., z_k)$, また添え字 c は $c_{k+1} < \cdots < c_n$ となるようにソートされてお 0, 1 から ${}_nC_k$ までの値をとります. このとき

$$\rho_{k,n} = \frac{1}{{}_{n}C_{k}} \sum_{c=1}^{{}_{n}C_{k}} \Phi_{c}^{*}(w)\Phi_{c}(z)$$
(274)

となるので、エンタングルメント・エントロピーは以下のようになります:

$$S_{k,n} = -tr(\rho_{k,n}\log\rho_{k,n}) = \log({}_{n}C_{k})$$

$$\tag{275}$$

エントロピーの最大値は k = n/2 のときで, $n \to \infty$ の場合には $S_{k,n} \leq S_{(n/2),n} \sim n \log 2$ と評価できます $(\log n! \sim n \log n - n, \text{ particle partitioning には直接的に topological entanglement entropy が現れることはないようなので注意). 従って半分の系に対する Hilbert 空間の有効次元は <math>O(n^{n/2})$ ではなくて高々 $O(2^n)$ ということが分かります.

Laughlin 関数 (*N* 粒子, $\nu = 1$)の MPS 表現 $\nu = 1$ の Laughlin 波動関数は一粒子 軌道 { $\phi_{a_j}(z_j)$ } に対して MPS で表わすことができます (二次元的な TPS ではないこと に注意して下さい). 初めに $\chi \times \chi$ 行列 $A_i^{a_i}$ を導入して,

$$\Psi_{\nu}(z_1, z_2, \dots, z_n) = \frac{1}{\sqrt{n!}} \sum_{a_1, a_2, \dots, a_n = 0}^{n-1} tr\left(A_1^{a_1} A_2^{a_2} \cdots A_n^{a_n}\right) \phi_{a_1}(z_1) \phi_{a_2}(z_2) \cdots \phi_{a_n}(z_n) \quad (276)$$

という関数形を仮定します. これは間接的な議論かもしれませんが, Laughlin 状態と VBS 状態は類似性が認められるので、今の場合には空間二次元系であっても TPS ではなくて MPS になるということが期待されるためです ¹²¹. さてこの行列 $A_i^{a_i}$ は Clifford 代数で

表わされることが以下のようにして確認できます. まず Clifford 代数 *Cl*(0,*n*) は次の反 交換関係で定義されます:

$$\{\gamma^a, \gamma^b\} = 2\delta^{ab} \tag{277}$$

ここで a, b = 0, 1, ..., n - 1, $\gamma^a_{\alpha\beta}$ の添え字は $\alpha, \beta = 1, 2, ..., \chi$ で $\chi \times \chi$ 行列です. この代数の次元は 2^n 次元で, 例えば Cl(0, 2) を実現するにはパウリ行列を用いて

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ e_1 = i\sigma_z, \ e_2 = \sigma_x, \ e_1e_2 = -e_2e_1 = i\sigma_y$$
(278)

を組 {1, e_1 , e_2 , e_1e_2 } にすればよいことが分かります. Clofford 代数の表現論に従うと,行 列次元は $\chi = 2^{n/2}$ で与えられます. ここで例えば *n* が偶数の場合には,

$$\gamma_5 = (-i)^{n/2} \gamma^0 \cdots \gamma^{n-1} \tag{279}$$

として空間一様行列+境界演算子

$$A_{i}^{a_{i}} = \begin{cases} \gamma^{a_{i}} & i = 1, 2, ..., n - 1\\ \gamma^{a_{i}} \gamma_{5} & i = n \end{cases}$$
(280)

を導入すれば

$$tr\left(A_{1}^{a_{1}}A_{2}^{a_{2}}\cdots A_{n}^{a_{n}}\right) = -(2i)^{n/2}\epsilon^{a_{1}\dots a_{n}}$$
(281)

を得ることが具体的な計算からすぐに分かります. このことから particle partitioning entropy が $S = \log \chi = (n/2) \log 2 \propto n$ となることが確かめられ,前節の結果を裏付けま す. 空間一様の行列積が現れるときには,境界演算子が励起モードの性質を決めるうえで 重要な働きをします¹²².

VBS 状態の議論でも述べたように、仮に上記と異なるテンソル積表現が存在するとしても、エンタングルメント構造は不変なはずなので、エントロピーが粒子数に比例する ことは一般的な結果と言えます. 量子 Hall 系の詳細な DMRG 計算が行われていますが、 それが成功している背景は、粒子数があまり多くなければ数値計算で制御できる程度のエ ンタングルメントしか生じないことに起因すると思われます¹²³.

以上の議論を分数量子系に拡張することも出来ます. 例えば m = 2 の場合には, MPS の数値最適化法のところで導入したトレース演算の積の性質から,

$$tr(\gamma^{a_1^1}\gamma^{a_2^1}\cdots\gamma^{a_n^1}\gamma_5)tr(\gamma^{a_1^2}\gamma^{a_2^2}\cdots\gamma^{a_n^2}\gamma_5)\phi_{a_1^1+a_1^2}(z_1)\phi_{a_2^1+a_2^2}(z_2)\cdots\phi_{a_n^1+a_n^2}(z_n)$$
(282)

に対して

$$tr(\gamma^{a_1^1}\gamma^{a_2^1}\cdots\gamma^{a_n^1}\gamma_5)tr(\gamma^{a_1^2}\gamma^{a_2^2}\cdots\gamma^{a_n^2}\gamma_5) = tr((\gamma^{a_1^1}\otimes\gamma^{a_1^2})(\gamma^{a_2^1}\otimes\gamma^{a_2^2})\cdots(\gamma_5\otimes\gamma_5))$$
(283)

を得ます. $\gamma \otimes \gamma$ の次元は χ^2 となるので,一般の *m* に対する Laughlin 関数の MPS 表現 では,行列次元が χ^m となることが分かります. 但しスピン *m*/2 の既約表現に分解する と, $S \sim n(\log m + \log 2) \ll \log \chi^m = mn \log 2$ となるべき行列積が導入できるようです.

6.4 Z₂ ゲージ模型のテンソル積状態

前に紹介したストリング・ネット模型は TPS の好例でもあります¹⁰³⁻¹⁰⁷. この模型の 場合,系のトポロジカルな性質はグローバルなエンタングルメント構造で決まりますが, そのような場合にも局所的なテンソルの積で波動関数を書き下すことができます. つまり テンソルの次元がエンタングルメントの強さに関係しています. TPS を

$$|\psi\rangle = \sum_{\{s_j\}} C(T^{s_1}T^{s_2}\cdots T^{s_m}\cdots) |s_1s_2\cdots s_m\cdots\rangle$$
(284)

と表わすと (*C* はテンソルの縮約), テンソル (T^{s_m})_{$m_1m_2m_3$} はサイト *m* に属する 3 つの *q*-bits を結合して, それらの物理的な 2³ 状態に射影します. ここでリンク上の *q*-bits が エンタングルしているので m_1, m_2, m_3 の各次元が $\chi = 2$ となっています. ストリングが 閉じたループを描くときには, 各点から延びるストリングの数が偶数にならなくてはなら ないので, ストリング有りを 1 と書くと, テンソルの要素は自然に

$$(T^{000})_{000} = (T^{011})_{011} = (T^{101})_{101} = (T^{110})_{110} = 1$$
(285)

となることが分かります(これ以外の成分はゼロ).また各ループ構造の重みが等しいことも確かめることができます.

6.5 数值的変分理論

エンタングルメント・エントロピーをうまく利用して系のスピン・電荷・軌道相関を調 べたり、また或いは計算精度を把握するという目的は、波動関数が顕に与えられる変分法 的手法であれば通常は達成することが出来ます.有限系のシミュレーションに向かない方 法であっても、particle partitioning などのエントロピーが導入できます.数値的変分理 論として有名なものとしては、先ずは**変分モンテカルロ法**が挙げられます.個人的に興 味があるのは、高温超伝導の問題に関連して議論されている相関因子(通常のグッツウィ ラー因子にホロン・ダブロンの相関を取り込んだもの)がどれぐらいのエントロピーを取 り込んでいるかと言うことです.また共鳴ハートリー・フォック法と呼ばれる数値計算法 も知られています¹²⁴.これは、多体波動関数を複数の非直交スレーター行列式の重ね合 わせで表わす方法です.重ね合わせることがまさに余剰次元或いは量子揺らぎの回復に相 当します.非直交であることのメリットに関して物理的なイメージを得ることは、対角化 系の諸手法や DMRG の基底の意味合いを考える上でも示唆的なものであると考えます. 但し通常の共鳴ハートリー・フォック法では一つのスレーター行列式を構成する基底関数 も随時最適化されるので、どのようにエンタングルメント・エントロピーを定義するのが 適切かということは考える必要があるかもしれません.

7 階層的テンソルネットワークと AdS 時空

MPS, TPS といったテンソル積波動関数は、テンソル次元 χ を十分大きくしていけば 原理的には任意の状態を精密に記述することが可能です。一方で臨界系の計算は非常に計 算機のパワーがいるので現実的ではありません。また複雑化したエンタングルメント構 **造の物理的意味を紐解くことは難しくなっていきます.そこで新たに加える余剰の次元方** 向にテンソルを細かく分割していくことでその構造が明確になり、且つ豊富な機能を付 加させることが出来ます. その例として「Tree Tensor Network (TTN)」があります ^{125,126}.またテンソル積波動関数の最も進化した形態が「マルチスケール・エンタングル メント繰り込み群(Multiscale Entanglement Renormalization Ansatz, MERA)」 です¹²⁷⁻¹³⁴.テンソル積波動関数を導入した時点で、「変分波動関数の持つエンタングルメ ント構造が面積則に適合しているかどうか?」という意識は既にあった訳ですが、いつも 対数補正がうまく表現できませんでした. MERA ではそのような長距離の相関を明確な 形で取り込むような工夫がされています。つまり局所テンソルの積から出発して、相関関 数の正確なべキや相転移近傍の状態を取り扱うことが出来るかということがここでの問 題です.実は MERA はやはり超弦理論の分野で研究されている「ホログラフィック繰り 込み群」の具体的な例となっています¹³⁵.「ホログラフィック繰り込み群」とは、漸近的 に AdS 計量を持つ時空の動径座標が、その時空の境界に定義された共形場理論の繰り込 みフローのパラメータに等しいことに基づいています。後に述べるように、MERA のブ ロック変換のフローが AdS 時空に乗っているということが臨界現象を正確に記述する裏 付けとなります、以上のことを踏まえて、以下では階層的テンソルネットワークとしての MERA とその幾何学的背景を中心に議論しましょう.

7.1 Tree Tensor Network (TTN)による階層的テンソルネットワークの構成:実空間繰り込みの視点回復

Tree Tensor Network 「テンソル積を階層的にする」ということはどのような意味か をまずは確認しましょう.これまで行ってきたことは,一般的な波動関数

$$|\Psi\rangle = \sum_{s_1=1}^{d} \sum_{s_2=1}^{d} \cdots \sum_{i_N=1}^{d} c^{s_1 s_2 \cdots s_N} |s_1 s_2 \cdots s_N\rangle$$
(286)

の係数 *c*^{\$1\$2…\$N} をテンソル積に分解するために,各格子点上に物理的なインデックスと 格子点から延びるリンクの本数に相当する非物理的なインデックスを持ったテンソルを導 入し,隣接サイト間で非物理的インデックスをエンタングルさせるのでしたね.こうす ると局所的な量を扱いながら非局所相関を取り入れるのでした.ここで「実空間繰り込 み」という視点を回復することを考えます.どういうことかと言うと,DMRG をはじめ としたテンソル積の方法はほとんど変分法の装いが強くて,元祖 Wilson RG の意識は消

図 16: TTN の一例(二分木ネットワーク):(a) は実空間の粗視化を表わす.(b) は二分 木ネットワークの模式図を表わす.

えかかっているのですが,そこに何らかの対応をつけようということです.DMRG など はギャップのある系に強いのに対して,ギャップレスの系はやや苦手ですから,悪く言う と Wilson RG のよい点もスポイルされてしまっている訳です.

例えば図 16 (a) に示したように、二次元格子上で 2 サイトを有効的なシングルサイト に粗視化するという操作を考えてみましょう. この操作は図 16 (b) の二分木構造のよう に表わすことが出来ます. 図 16 (b) では、粗視化をグレーの三角形で表わしています. こ の三角形は粗視化前後のインデックスそれぞれを β_1, β_2 及び α として、 $(w)^{\alpha}_{\beta_1\beta_2}$ というテ ンソルです. このテンソルは isometric で

$$\sum_{\beta_1,\beta_2} (w)^{\alpha}_{\beta_1\beta_2} (w^{\dagger})^{\beta_1\beta_2}_{\alpha'} = \delta_{\alpha\alpha'}$$
(287)

という関係式を満たします. このような isometory テンソルの縮約をとったものが波動 関数の係数 $c^{s_1s_2\cdots s_N}$ となります. ここで α の次元は, ネットワークの一番下の階層では 厳密には d^2 ですが, これを $\chi(< d^2)$ に近似します. これで情報の縮約・粗視化が起こり ます. 上の階層に進むにつれて, $\chi^2 \rightarrow \chi$ という情報の粗視化が進行します. 一般には p個のサイトを一つに粗視化することも可能なので, その場合にはテンソルが $(w)^{\alpha}_{\beta_1\cdots\beta_p}$ と なって, $\sum_{\beta_1\cdots\beta_p} (w)^{\alpha}_{\beta_1\cdots\beta_p} (w^{\dagger})^{\beta_1\cdots\beta_p}_{\alpha'} = \delta_{\alpha\alpha'}$ を満たすように取ることになります.

意識的に「階層」という言葉を使いましたが、単純な MPS, TPS から発展して、テン ソル・ネットワークが階層的あるいは *d*+1 次元的になったことがお分かり頂けるでしょ うか?「繰り込み操作」は「テンソル・ネットワークを階層化する」ことに対応するので す. ここで興味深いのは、木構造は遠くの枝の部分が幹の部分を経由して間接的に繋がっ ているということです. これは長距離相関を取り入れるキーポイントとなりますが、まだ 今のままでは短距離相関も長距離相関も一緒に含まれているので、どのような系の解析に 最も有効かは自明ではないことに注意しておいて下さい. MERA に進むときにこの点を 解消しようということが具体的な目的となるためです.

図 17: サイト j における isometory w_j の最適化に直結するネットワーク: (a) 余分な isometory を縮約する前のネットワーク, (b),(c) は isometory の最適化に関わるが, (d) は最適化に関与しない.

isometory の最適化 具体的な数値計算の道筋を少し述べておきましょう.問題として は isometory を最適化することです.即ち,TTN 構造の基底状態波動関数 $|\Psi(\{w_j\})\rangle$ に 対して (j はネットワークの張る空間の格子点を表わす)

$$E(\lbrace w_j \rbrace) = \langle \Psi(\lbrace w_j \rbrace) | H | \Psi(\lbrace w_j \rbrace) \rangle$$
(288)

を最小にする $\{w_j\}$ の組を探すことが目的です. 基本的には MPS, TPS と同様, 或るサ イト j に着目して w_j を最適化し (このとき他の isometory は固定している), それをエ ネルギーが収束するまで全てのサイトに渡って計算するというものです.

ネットワーク内で isometory w_j の最適化に関係する部分が或る程度限られているということは注目に値します. 最隣接相互作用を含むハミルトニアンの場合 (例えば図 17 では●●, ■■で表わしている), w の関係式 (287)を考慮すると, 例えば図 17 (b)(c) に示したような範囲のネットワークがエネルギー期待値に寄与します. 一方 w_j から下に延びていない枝に繋がった相互作用は定数項としてしか $E(\{w_j\})$ に寄与しませんので, 最適化の際には考える必要がありません. ここから先は色々な方法が考えられます. 一つの方向としては, w_j が w'_j と独立であると仮定して線形化し, w の環境 Y を用いて tr(Yw) を最小化するというものです. Y を特異値分解して $Y = U\lambda V^{\dagger}$ と表わし, $w = -VU^{\dagger}$ と取れば $tr(Yw) = -tr(\lambda)$ となるので, 残すべき χ 状態は特異値が大きな固有ベクトルであることになります. この事情は DMRG の場合とほとんど同じです.

図 18: Binary 1D MERA network と causal cone (色つき部分)

7.2 disentangular によるエンタングルメントの制御:MERA

図 18 が基本的な MERA ネットワークの一例です. だいぶ複雑になったように見えま すがそうではありません. TTN の各ライン間に■で示されたユニタリー変換を挟んだも のです (TTN と MERA の関係をよく見て下さい). このユニタリー変換の働きは, 情 報の粗視化の前に周囲とのエンタングルメントがなるべく少ない基底に変換してから粗 視化するというものです. 問題を解くために適切な基底を選ぶことはいつでも非常に重要 ですが, それをエンタングルメントという視点から繰り込み操作に適合するようにしたも のと言えますね. このユニタリー変換は「周囲とのエンタングルメントを (部分的に) 解 く」と言う意味で「disentangular」と呼ばれています. disentangular は

$$\sum_{\alpha,\beta} (u)^{\mu\nu}_{\alpha\beta} (u^{\dagger})^{\alpha\beta}_{\mu'\nu'} = \delta_{\mu\mu'} \delta_{\nu\nu'}$$
(289)

という関係を満たします.この階層性で面白いのは,短距離の相関は「わざと」切りなが ら繰り込みを行い始めたのに、長距離の相関は取り込むことができているという点です. 従って臨界系を解析するのに向いています.TTN に比べると,短距離・長距離相関のい ずれが重要かというところが明確になっていることが重要であると言えます.色で示した 領域は「causal cone」と呼ばれており,言葉の意味通り,オリジナルサイト(●)を原 因として生ずる繰り込み後の状態を示しています.TTN の場合と同様に, disentangular も最適化を施す必要があります.

図 19: テンソルネットワークの模式図.式(290)の計量と対応するように座標系を張っています. x が空間方向, τ が繰り込み方向(AdS 時空の動径座標)です. τ 座標は繰り込みの回数を表わします. 色つきの領域は繰り込みの各層(異なる τ の粗視化空間を「層」と呼びます)における粗視化された対象領域 A の「境界」を表わします. そしてジグザグの線が「因果円錐(causal cone)」を表わしています.

7.3 テンソルの階層構造に隠れた AdS 計量と面積則

MERA の階層的テンソルネットワークには、実は「離散的 AdS 計量」が隠れていま す ¹³⁶. それを理解するために、MERA のネットワークを図 19 のように表わしましょう. 横軸に空間方向 x、縦軸に繰り込み方向 τ を取っています. ここで isometory (□で表わ す)を「有効サイト」としながらも、「わざと」大きさを変えて連続極限での全系の長さが 保存するようにしてあります. このように取ってよいのは、臨界系近傍ではスケール不変 になるためです. 繰り込み方向の座標値は繰り込みの回数であり、0,1,2,... となります. $\tau = 0$ がオリジナル量子系です. 異なる τ の系を「粗視化された τ 番目の層 (layer)」と 呼ぶことにします.

上記の表示が AdS 時空であることを確かめるために,式(11)の計量

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(dz^{2} + dx^{2} \right)$$
(290)

から出発し、 $z = a^{r/L}L$ (但し a は任意の定数)と変換し

$$ds^{2} = \left\{ d(\tau \log a) \right\}^{2} + (a^{-\tau/L} dx)^{2}$$
(291)

を導入します. この計量と図 19 を比較しましょう. この場合は a = 2 と取ることに対応 します. 先ず式 (291) において, $\tau = 0$ の層から $\tau = 1$ (τ 方向の長さのユニットは L) の層に進むと、 $(a^{-\tau/L}dx)^2$ の項が $(dx)^2 \rightarrow (dx/2)^2$ となります. このことは図 19 にお いて $\tau = 0$ の層での二マス分の距離が $\tau = 1$ の層での一マス分に相当することに等価で す. ちなみに, a の値はどのようにとっても構いません. a = 3と取れば, 繰り込みに際 して 3 サイトを一つの有効サイトに置き換えることを意味します. 一方, \Box の τ 方向の 幅を log a でスケールし直してしまえば, τ 方向は何も影響を受けません. 臨界点近傍の スケール不変がここでも役に立ちます. 以上から, どのような MERA ネットワークを構 成しても, 最終的には式 (290) で表わされる最も基本形の AdS 計量に変換することが できます. 従って, AdS/CFT 対応によれば, AdS 境界に属しているオリジナル量子系 ($\tau = 0$) は CFT の性質を備えることになります. このようにして, MERA が臨界系の 計算に向いているということは, AdS/CFT 対応から裏図けられます.

エンタングルメント・エントロピーの計算について考えましょう.既に勉強したように, 幾何学的にはホログラフィック・エンタングルメント・エントロピー *S* ~ *L*^{d-1} log *L* が得 られるはずですね.この解釈をするために,繰り込みの各層が元の領域 *A* とエンタング ルしているはずであることに注目します.その場合には,各粗視化の層の「境界」の面積 則(対数補正なし,図 19 では色で塗られたブロック)を全て足し上げることで正しいエ ントロピーが計算されると期待されます.つまり causal cone の境界面がエントロピーに 寄与することになります.再びスケール不変であることを念頭に置くと,境界面の超面積 は AdS 時空において領域 *A* を囲む極小曲面の離散版に対応しています.このことから もホログラフィーによる計算が正当化されます.MERA ネットワークの各層は,エント ロピーに対して各々等価な寄与を与えることが,実際に数値的に確かめられています¹²⁷. 以上の結果は,拡張された空間でエンタングルメント・エントロピーに対する面積則を 考えれば,対数補正をする必要がないことを示唆しています.逆に対数補正が必要ない系 (ギャップのある系)では,単純に MPS や TPS をつくればいいので,ここまで複雑なこ とをする必要はありません.例えばリング交換相互作用のある模型などでは,局所構造が 期待されるので,MERA よりもプラケット基底のほうがおそらくベターでしょう.

7.4 DMRG 屋さんは「メラメラ」しましょう

DMRG は既に使っていて「MERA でメラメラ」したい!(西野さんがこんなこと言っ ておりました…)と思っているけど,テンソル積になじみが薄くて,プログラミングが 心配だなという方は,DMRG の継ぎ目に単純にユニタリー変換を施してみたり先ずは 実験をして下さい.この場合にはマルチスケールにはなっていませんが,Hubbard 模型 や Heisenberg 模型であれば継ぎ目にシングレットが局在しやすいので,そのエンタング ルメントを解いて計算の精度が上がる効果があるはずです.シングレットは maximally entangled なので,勝手なユニタリー変換でも多少は精度が上がると思われます.

8 実は画像処理が凄い!

最後に物性物理を離れて情報理論の話題を取り上げましょう. DMRG をお使いの方で あれば,量子古典対応を手がかりにして,一次元量子系の手法である DMRG を二次元古 典系に応用しようと考えるのは自然でしょう.二次元古典系にも色々ありますが,例えば 画像処理も二次元古典系を取り扱うことに相当します.私は DMRG にも使われている特 異値分解をもとにして現在色々なテーマを試みているのですが,特に画像処理は DMRG の単なる応用ではなくて,本稿の話題を全て含んでいるようなのです.画像のエンタング ルメント・エントロピーを計算し,AdS/CFT 対応を頼りにして画像(これが実は重力場 と等価であることを後に示します)と共形場理論を行き来すると,超高効率画像圧縮や対 象に依らない劣化画像再生などができそうです.また重力理論に対する新たな知見を得る ことが出来るかもしれません.本節では本稿で勉強してきた方法を駆使して,画像に潜む 重力理論について議論します.

8.1 特異値分解による定式化

初めに画像データを特異値分解を用いて異なる要素に分解します¹³⁷.エンタングルメント・エントロピーの定義のところで述べたように、系の波動関数を

$$\psi(x,y) = \sum_{l} U_{l}(x) \sqrt{\lambda_{l}} V_{l}(y)$$
(292)

と書きます. 画像の場合には, $\psi(x, y)$ がピクセル (x, y) における色の値 (グレースケー ルだと 0 ~ 255 の間の整数値)を表わしています. この中で重要な成分は $\sqrt{\lambda_l}$ が大きい lになります. 何故かというと, λ_l は密度行列の固有値なので, 状態 l の実現確率を表わ しているためです. そのため $\lambda_1 > \lambda_2 > \cdots \lambda_m$ に対して

$$\psi_m(x,y) = \sum_{l=1}^m U_l(x)\sqrt{\lambda_l}V_l(y)$$
(293)

を導入し,これを $\psi(x,y)$ に対する最適の近似と考えます.またこれに対応して,エンタ ングルメント・エントロピーも m の関数として

$$S_m = -\sum_{l=1}^m \lambda_l \log \lambda_l \tag{294}$$

という形を仮定します.ちなみに,DMRG では「トランケーション・エラー」 $\epsilon_m = 1 - \sum_{l=1}^{m} \lambda_l$ を用いて計算精度を見積もります. S_m とは基本的には似たような量ですが, S_m の方が対数で定義されているので, S_m の小さな部分の性質を見るのに都合がよいと言えます.これは相関関数の長距離部分をどう見るかということと関連しており,面積則を導くにあたっては重要なことです.

図 20: サンプル画像, 3×4 ピクセル

さて具体的な例(図 20)を用いて,近似的な波動関数がどのような形をしているか調べましょう.そのためにまず波動関数 $\psi(x,y)$ を行列の要素だと考えて,

$$\psi = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 1\\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \psi^* = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 1 & 0 \end{pmatrix}$$
(295)

と書くことにします. ここで白いピクセルの値を 1, 黒いピクセルの値を 0 とし, グレー スケールはその間の値 k/256(k = 1, 2, ..., 255) を取ると考えます. また係数 $1/\sqrt{6}$ は規格 化のための因子です. ψ^* は ψ の複素共役の転値行列を意味します. この波動関数 $\psi(x, y)$ に対して X 方向及び Y 方向の密度行列 ρ_X, ρ_Y は

$$\rho_X = \psi \psi^* = \frac{1}{6} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad \rho_Y = \psi^* \psi = \frac{1}{6} \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
(296)

と書くことができます. 例えば ρ_X に関しては, 行列積で Y 方向の自由度を縮約してい ますので, X 方向の密度行列ということになります. また規格化因子を導入したことで $tr\rho_X = tr\rho_Y = 1$ が成り立っています. これらの行列 ρ_X, ρ_Y を対角化すると, ゼロでな い固有値は一致しており,

$$\lambda_1 = \frac{1}{6}(2+\sqrt{3}), \ \lambda_2 = \frac{1}{3}, \ \lambda_3 = \frac{1}{6}(2-\sqrt{3})$$
 (297)

となることが分かります. また ρ_X の各固有値に属する規格化された固有ベクトル $\rho_X \vec{u}_l = \lambda_l \vec{u}_l$ は,位相因子を除いて次のようになります:

$$\vec{u}_1 = \frac{1}{\sqrt{12 + 6\sqrt{3}}} \begin{pmatrix} 1 + \sqrt{3} \\ 2 + \sqrt{3} \\ 1 \end{pmatrix}, \vec{u}_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \vec{u}_3 = \frac{1}{\sqrt{12 - 6\sqrt{3}}} \begin{pmatrix} 1 - \sqrt{3} \\ 2 - \sqrt{3} \\ 1 \end{pmatrix} (298)$$

-方
$$\rho_Y$$
 に対しては $\rho_Y \vec{v}_l = \lambda_l \vec{v}_l \, \epsilon$ 解いて
 $\vec{v}_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} \\ 1 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 0 \\ -2 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{3} \\ 1 \\ 1 \\ 1 \end{pmatrix}$ (299)

となります.以上の固有値及び固有ベクトルから,

$$\psi_m(x,y) = \sum_{l=1}^m U_l(x) \sqrt{\lambda_l} V_l(y) = \sum_{l=1}^m \psi^{(l)}$$
(300)

を求めると(例えば u_l の第 x 成分が $U_l(x)$ を表わします),異なる特異値 λ_l に属する 成分 $\psi^{(l)}$ は以下のようになります(ここで行列要素は一般には $k/256\sqrt{6}$ となりませんの で,数値計算的には最も近い値に近似します):

$$\psi^{(1)} = \frac{1}{6\sqrt{6}} \begin{pmatrix} \sqrt{3}(1+\sqrt{3}) & 1+\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\ \sqrt{3}(2+\sqrt{3}) & 2+\sqrt{3} & 2+\sqrt{3} & 2+\sqrt{3} \\ \sqrt{3} & 1 & 1 & 1 \end{pmatrix}, \quad (301)$$

$$\psi^{(2)} = \frac{1}{3\sqrt{6}} \begin{pmatrix} 0 & -2 & 1 & 1 \\ 0 & 2 & -1 & -1 \\ 0 & -2 & 1 & 1 \end{pmatrix},$$
(302)

$$\psi^{(3)} = \frac{1}{6\sqrt{6}} \begin{pmatrix} -\sqrt{3}(1-\sqrt{3}) & 1-\sqrt{3} & 1-\sqrt{3} & 1-\sqrt{3} \\ -\sqrt{3}(2-\sqrt{3}) & 2-\sqrt{3} & 2-\sqrt{3} & 2-\sqrt{3} \\ -\sqrt{3} & 1 & 1 & 1 \end{pmatrix}.$$
 (303)

ここで $\psi^{(l)}$ が元の画像とどれだけ類似しているかということと,行波動関数 u_l 及び列波 動関数 v_l の節が画面のどの位置に来るか着目してみましょう.最も実現確率の高い $\psi^{(1)}$ では,白いブロックの多い一列目と二行目の重みが大きくなっています.この特徴は $\psi^{(1)}$ を構成している固有ベクトル u_1, v_1 にも現れており,例えば u_1 について見てみると,行 方向から画像を眺めた時の白いブロックの数と u_1 の要素の大きさには明確な対応関係が あります.同様に v_1 については,列方向から画像を眺めた時の白いブロックの数がその 要素の値に対応しています.そのようにして得られた u_1, v_1 の重なりが $\psi^{(1)}$ を構成して います.一方 $\psi^{(2)}$ はどうでしょうか?これは明らかに色の濃淡がより鮮明に現れるよう な補正項として働いています.濃淡の変化が激しいピクセルで波動関数の位相が変わって います.この後示す色々な画像を圧縮してみて分かることは,この方法では Fourier 変換 の高周波カットなどと違って,或る行や列と類似度が高い行や列の数が多ければ,たとえ 画像が高周波の構造を持っていても,比較的小さい m で再生が行われるという特殊性を 持っています.

図 21: 松枝居室の雑然とした風景:左上から右下にかけて m = 384(original), 40, 20, 10, 2, 1

図 22: 仙台高専広瀬キャンパス校庭の木:m の値は右下から左上にかけて m = 768(original),16,8,4,2,1:枝の別れ方がフラクタル的で、きっと何かあるだろうと目を つけていた木です. 空が割れるように重力場のさざ波が伝わっていきます. 何だかスター トレックみたいだな….

図 23: 仙台高専広瀬キャンパス情報工学科3年有志とのひとコマ:三年間数学・物理を一緒に勉強して、学級担任もした学年でした. 彼らの教育も重要な仕事です. これって何の 研究なんだろうか…. 黒いジャージの S 君のところで位相反転していることが画像から も数値データからも分かります (数値データはここには掲載していません). この写真の エンタングルメント・エントロピーは $\log m$ に対して傾き 1/6 に近いのですが、右三人 の顔の輪郭が近いために周期的な傾向もあり、少しだけ傾き 1/3 の方向にずれています. 右下から左上にかけて m = 618(original), 16, 8, 4, 2, 1

図 24: 色々な画像のエンタングルメント・エントロピー: (a) ○シマウマ(425×640), △車(512×512), ▽松枝居室(512×384), □猫(398×342); (b) ×花(640×425), ◇校庭の木(1024×768). (a) の補助線は傾き 1/6, (b) の補助線は傾き 1/6 と 1/3 を 表わします.

8.2 圧縮画像とエンタングルメント・エントロピー

さて色々な画像を圧縮してみましょう.本稿に掲載した写真は,自分のデジタルカメラ で撮影した仙台高専の日々の風景です(学生達には雑誌に載せる許可を取っています). 図 21 に画像圧縮の例(松枝居室)を示します.ピクセルサイズは横×縦が 512×384 で す.以降の画像は全て横×縦でピクセルサイズを表わすことにします.ピクセルサイズが 512×384 であるということは,前述のように 384 個の独立な固有ベクトルが存在するこ とを意味します.掲載したパネルは,左上から右下にかけて m = 384,40,20,10,2,1 とし たものです.本稿で用いた画像圧縮の定義によれば,画像は実現確率の高い m 個の固有 ベクトルで近似されるのですが,図 21 をよく見ると m を増加するごとに細かい不連続 なブロックに分割されながら画像を再生していくことが分かります.他の画像(図 22 及 び図 23)を調べてみると,このブロックへの分割位置や分割数は画像によって異なりま すが,定性的には似たような振る舞いを見せることが分かります.

図 24 に色々な画像に対するエンタングルメント・エントロピー S_m のグラフを示します. す.エンタングルメント・エントロピー S_m は、画面に類似したものが二つ以上現れない 場合に対して、m が比較的小さい領域で

$$S_m = \frac{1}{6}\log m + \gamma \tag{304}$$

という不変的なスケール性を示します.一方,花が群れている画像やフラクタル性のある 画像など,スケール不変な対象が複数現れる場合には傾きがちょうど二倍大きい

$$S_m = \frac{1}{3}\log m + \gamma \tag{305}$$

という関係でスケールされます. *m* が大きくなるとこのスケール性からは外れて飽和していく様子が見えますが, *S_m* が飽和する *m* 周辺で近似データはおおよそ元の画像を再現します. 図 24 から, ピクセルサイズが大きくて解像度が高い画像ほど, 比較的大きな *m* まで log *m* へのスケール性がよいことも分かります. また, 残留エントロピー $S_1 = \gamma$ は画像によらず $\gamma \sim 1.3$ となります. 今の圧縮法では縦か横の情報を縮約した密度行列 を計算しているので, 実効的に一次元量子系の計算をしていることに対応しているのです が, 臨界状態の一次元系では, 開放端の場合に

$$S \sim \frac{1}{6} c \log L, \tag{306}$$

周期境界条件の場合には

$$S \sim \frac{1}{3}c \log L \tag{307}$$

というのが共形場理論で得られる通常のスケーリング関係式です. 従って, 今の場合には トランケーション数 m がシステムサイズ L の代わりをしているように見えます. またこ の対応が正しければ, 中心電荷 c の大きさは c = 1 であると推測されます. 以上の計算 結果は物理的に何を意味しているのでしょうか?

8.3 AdS/CFT 対応によるエンタングルメント・エントロピーのホログ ラフィー的解釈

数値実験で確かめたことは、m を増加させると次第に細かいブロックに分割されてい くことでした.この分割位置や個数は画像に大きく依存しますが、最終的に得られるエン タングルメント・エントロピーは非常に普遍性を備えたものです。そこで MERA を理解 するために用いた図 19 に戻ると、式 (291) においてどのような a を取っても良いとい うことがこの事に対応すると思われます。即ち、この分割を X か Y の一方向から眺め て、それに繰り込みの回数を「余剰次元」として加えて二次元空間を構成したときに、こ れがちょうど画像によらず AdS 空間になると考えられます。つまり画像の濃淡は重力場 の強さと対応関係にあるということができます。エンタングルメント・エントロピーを導 入した節で、一次元量子系に対するエンタングルメント・エントロピーのホログラフィー 理論の概要を示しましたが、それを再考することから始めましょう。即ち

$$S = \frac{1}{6}c \log\left(\frac{\left(L + \sqrt{L^2 - (2a)^2}\right)^2}{(2a)^2}\right),$$
(308)

ここで $a \rightarrow 0$ の極限を取ってエントロピー則を導出したのでした. 特異値分解による画 像処理の場合, 圧縮をかけても画像の総ピクセル数自体に変化はないので, システムサイ ズ L は不変で, 640 × 425 ピクセルの画像であれば L = 425 となります. 今の場合繰り 込みでカットオフが粗視化されているので, m が小さい領域は $a \rightarrow L/2$ に向かう流れで あると見ることができます. このとき, 対数の中の因子は 1 に近づき, 一方 a が小さく なると m が増加します. 従ってこの因子は m と同じような働きをしています. 従って, 最終的なエンタングルメント・エントロピーの式は,

$$S = \frac{1}{6}c\log m, \tag{309}$$

$$m = \frac{\left(L + \sqrt{L^2 - (2a)^2}\right)^2}{(2a)^2} \tag{310}$$

で与えられると考えられます. これより, 図 24 で示されたエンタングルメント・エント ロピーのスケーリングから, c=1 であることが推測されます. m に関する式は

$$\frac{L}{a} = \sqrt{m} + \frac{1}{\sqrt{m}} \tag{311}$$

とも変形できます.この式を見ると,組みひも群の多項式不変量と何らかの関係があり そうな気がします(後ほど議論しますが,MERA で局所回転したときに,回転・圧縮す る前の画像と連続的に繋がっていなくてはいけないというトポロジカルな性質と関連し ているかもしれません).この式から圧縮効率の意味合いを考えてみましょう.図3に 従うと, $a \to 0$ であるほど細かいスケールを再現できるはずです. 但し *XY* 間の測地 距離は円弧に沿っていますので, $a \to 0$ に或る程度近づくと傾きは無限に大きくなっ て, ほぼオリジナル画像の解像度を再現できる状況になります. 例えばここまでの例で 示した画像では m = 40 ぐらいでおおよそ元の画像を再現していた訳ですが, この場合 $2a/L = 2\sqrt{m}/(m+1) \sim 0.3085$ となり, 確かにだいぶ円弧の傾きが大きな領域に入って きていることが分かります.

8.4 中心電荷と双対性

続いて、元の画像と対応する一次元量子系との双対性を、中心電荷の値の観点から考察 します.中心電荷が c=1、ガウシアン・ユニバーサリティ・クラスですので、一次元量 子系は自由ボソン場の理論です.一方 AdS/CFT 対応においては、双対空間で相互作用 の強弱が入れ替わることが大きな特徴です.このことから、画像は二次元古典系において 強い相互作用の結果として生じる「秩序状態」と解釈することができます.また残留エン トロピー(系のトポロジカルな性質を表わす) $S_1 = \gamma \sim 1.3$ が画像にあまり依存してい ない正の値であるように見えるのは、量子一次元系ではトポロジカルな性質を持ちにくい ことに起因すると考えられます.このような双対性が確かなものかを調べる目的で、ラン ダムデータの解析も行っています.「ランダム」であるということは、画像空間では「無 秩序」或いは「相互作用がない」ということを意味しています.従って双対空間では励起 モード間に強い相互作用が働き、寿命の長い準粒子は定義できないような状況に近いと考 えられます.実際にエントロピー S_m を計算してみると、log m が小さいところでの傾き はほぼゼロであり、双対性を裏付けます.

式 (308) に立ち戻って,例えば c = 1/2, $m = \{L + \sqrt{L^2 - (2a)^2}\}/2a$ という可能性が 排除できるかどうか考えておくことは重要かと思われます. この場合は Ising ユニバーサ リティ・クラスなので,系は Z₂ 対称性を持つ必要があります.一方,量子系の双対空間で ある二次元画像には Z₂ に関連する対称性がないので,c = 1/2 という仮定は排除できる と考えられます.他のユニタリ離散系列の場合も同様で,c = 1 - 6/p(p+1), p = 3, 4, 5, ...と書いた場合,例えば画素の諧調数と p,或いは m と L の間に適切な対応関係は認めら れません.

8.5 Zamolodchikov の c-定理, Boundary RG flow, ホログラフィッ ク繰り込み群

CFT の大域的な性質は実空間繰り込み群に基づいて詳しく検討されています.「大域的」 という意味は,時空(1+1)次元系全体の理論空間を考えて(臨界系でない領域も全て考 える),ある CFT がスケール不変性を破る摂動を受けたときに,どのような場の理論に 移行していくかということを見るということです. 繰り込みの固定点が臨界現象のそれぞ れのユニバーサリティ・クラスに対応しており,今の場合にはガウシアン・ユニバーサリ ティ・クラス (c=1) に繰り込まれます. ここで Zamolodchikov の c-定理という性質が 成り立ちます¹³⁸. これは繰り込み群の軌跡に沿って単調非増加な関数でかつ固定点での 値が中心電荷になる関数が存在するというものです. 今の問題では繰り込みのフローが AdS 時空の動径方向に沿っており,この場合には特にホログラフィック繰り込み群と呼ば れています. これはトポロジカル絶縁体のところで触れた g-theorem とも関係すること です⁸¹. この視点に立てば,CFT で記述される圧縮後のデータから出発して,オリジナ ル画像を再生するためにスケール不変性を破っていくと,c 関数に対応するエントロピー の log m に対する傾きは単調に減少しています. 但し,フラクタル図形など特殊な対称性 を持つ系の場合には c 関数の特異な振る舞いが見られており,これは今後研究を進めて いく必要があると思っています.

ここで用いた画像処理は単純な特異値分解を用いたものであり,特に TTN や MERA よりは DMRG に近いのですが,それでも実空間繰り込みの様々な性質が現れてくるとい うことが面白いところかなと思います.

8.6 高効率画像処理に関する知見

これまでの議論から, c=1 は特殊な場合を除いて非常にユニバーサルな値であると考 えられます. 従って, 画像圧縮という視点からは, S_m がなるべく小さい m で $\log m$ か ら飽和することが望ましいということが言えます.これは画像の濃淡,言いかえると重力 場を意図的に変動させるということに対応します。幾つかの簡単な画像で実験してみる と、平均的な色の数値を0として、そこからの変化で色の数値を決めると、白黒の入れ 替えがユニタリー変換に対応し、圧縮効率を変化させることが分かります.この見方は MERA と非常によく似ています²⁹. MERA では、情報の粗視化や繰り込みの際に、粗視 化ブロック間に disentangular と呼ばれるユニタリー変換を作用しました. そこで画像の disentangular を構成することが圧縮効率を上げるためには非常に重要であると考えられ ます. MERA も繰り込みフローの方向まで含めた高い次元で AdS 計量を内包している ので,本稿で述べた画像処理と非常に類似しているということになります 127.一方,こ のアイデアとは独立に、画像を回転させてから圧縮すると効率が変化すること、つまり エンタングルメントの強さを制御できることも我々の計算機実験の結果として分かってい ます.回転もまたユニタリー変換です.画像は四角なので,直接回転することは出来ませ ん、現状では枠を固定しておいて画像を回転(このようにすると元画像と完全に一致する ということはなくなってしまいますが) した新たなデータを作っています. しかしながら 元の画像データを極座標系で表わせば回転することができるはずです.この時には共形異 常 c の性質が何らかの形で理論に顔を出すことが期待されます. それで前述の c の値の

意味がより深く理解できると考えられます.以上の二つのユニタリー変換は一見すると全 く異なるように見えますが,適当な座標系の上では等価です.これらのアイデアを具体的 な数値計算のアルゴリズムに乗せることが非常に面白いことであると考えています.

また画像によらないユニバーサリティがあるということから、画像の劣化の仕方によら ない修復法が考えられる可能性があります.これらは今後研究を進めていく予定です.具 体的には劣化前後の S_m を評価することにより、飽和後の m の領域にその情報が現れる のではないかと考えています.

8.7 Dirichlet brane の力学と画像処理

画像処理に AdS/CFT が隠れているということが分かると、超弦理論の視点から「Dbrane」と呼ばれる高次元膜の力学を解析することが相補的な見方となるはずです. Dbrane とは、物質の基本単位である弦の端が 10 次元時空において乗るオブジェクトです が、今の場合のブレーンに相当するものは、まさに画像空間そのものであると考えられま す. 但し、二次元画像が三次元空間に浮かんでいて、その三次元目の余剰時空方向に二次 元膜が揺れることができるという状況です. D-brane の D は Dirichlet 境界条件の略で. 画像処理の場合には画像を上から見ると、圧縮過程で外枠の形は変形していないように見 える一方で、二次元膜が伸び縮みして画像を見ている人には見えない余剰次元方向には運 動できるという状況を表わしています。このとき、先にも述べたように、膜内部の空間変 動が重力場であると解釈することができます。つまりグレースケールの色情報を重力の強 さ情報に読み替えをします.そこで逆に二次元膜の端を持って、Dirichlet 境界条件の下 に膜を「ユラユラ」させた場合、どのような端の振動によって膜内部の重力場、つまり画 像を再現できるかということを考えることが出来るでしょう、ここでは「空間二次元の情 報量」を例によって「空間一次元+振動の自由度」に変換しています。どのような振動を させれば画像を復元できるかが分かれば、少なくとも空間一次元分の情報は覚えておかな くてもよいということになります。また画像の重力場の山谷が複雑な形状からできている 場合ほど,端の振動は平面波+適切な摂動で近似的に表現できると考えられるため,通常 の二次元 Fourier 変換における高周波カットよりも効率的な情報圧縮ができる可能性があ ります.

9 気になる問題あれこれ

ほとんど研究のネタばらしのような気がするのですが、難しい問題が多くて研究を進める のに苦労しています(個人的には知りたいことですが、価値があるかどうかは別ですよ…). 特に本稿で述べた「エンタングルメント・エントロピー」「幾何学的見方」「AdS/CFT 対 応」を物性物理に応用していくことを意識しているのですが、どのように展開ができるの でしょうか.弦理論者との接点が重要かもしれません.

Hubbard-Holstein 模型や多軌道模型の面積則は何次元的か? Hubbard-Holstein 模型 や多軌道強相関模型は、空間次元の他にフォノン自由度や軌道自由度など各サイトに内部 自由度を持っています、従って、これらも余剰次元としての性質を持っていることが期待 できます、このようなホログラフィック空間まで考えた面積則が重要かどうかということ が分かれば、どのようなタイプの相関が発達するかということが理解しやすいはずです。 例えばフォノン演算子は、フォノンが独立な 2^N 状態を取ることが出来るとしたとき、こ れを N 個のハードコア・ボソンで厳密に展開できることが知られています。例えば空間 一次元の場合には,異なるサイト上にボソンの「擬サイト (pseudo site)」が連なってい る「櫛」のような格子を考えることになり、一次元とも二次元ともつかない微妙な状況で す、電子のホッピングに伴ってサイト間のハードコア・ボソンに間接的な相互作用が生ま れれば、面積則は二次元的になるのでしょうか?これは或る意味面積則の弱点で、面積則 は相互作用の効果を顕に含まないため、サイト間ハードコア・ボソンが直接相互作用して いない場合であっても、二次元的である可能性を排除しきれません、この疑問はこのよう な一般的な問題意識と捉えることもできます。また多軌道模型に関して言えば、スピンと 軌道のように異なる属性を持った量子自由度が含まれた模型では、それらの自由度は異な るテンソルで表現すべきでしょうか?その場合にはどのようなテンソルネットワークを組 めば最適なのでしょうか?

多光子励起状態に対するエントロピー則 基底状態に関する面積則は色々なことが分かっ ていますが,励起状態に関しての議論はあまりありません.個人的に重要だと思っている のは,光励起状態で多数の光キャリアが励起されたときや,強相関系のホロン・ダブロン など異種のキャリアが生成された場合に,キャリアの種類や凝集状態をエンタングルメン ト・エントロピーで識別できるかということです.フォトンエネルギーがωの光励起状態

$$|\omega\rangle = \operatorname{Im}\frac{1}{\omega + E_0 - H + i\gamma}j^{\dagger}|0\rangle$$
(312)

は空間一次元系であれば Dynamical DMRG で簡単に作ることが出来ます.この状態の環境自由度 B を縮約したシステム A の密度行列

$$\rho_A(\omega) = tr_B \left| \omega \right\rangle \left\langle \omega \right| \tag{313}$$

を導入し、そのエンタングルメント・エントロピーを下記で定義します:

$$S_A(\omega) = -tr(\rho_A(\omega)\log\rho_A(\omega)) \tag{314}$$

フォトン・エネルギーを例えばエキシトン(ホロン・ダブロン対)のエネルギー $\omega = \omega_{exciton}$ や連続状態(ホロンとダブロンは独立に運動) $\omega = \omega_{free}$ に合わせて $S_A(\omega)$ を計算した 場合, log L でスケールして明らかに傾きが異なる $S_A(\omega)$ が出てくるでしょうか?また多 光子励起の場合には,例えば空間二次元系において,光キャリアの凝集状態に応じたトポ ロジカル・エントロピーが現れるのでしょうか?

非平衡緩和過程を AdS/CFT 的に取り扱えるか? 光誘起相転移のドミノ効果などの非 平衡緩和過程などを AdS/CFT 対応からうまく取り扱えるか気になっています. 或る曲 がった時空の境界に問題の量子非平衡系が定義されているとして,例えばこれは数値対角 化などでは,小さな有限系でしかも限られた範囲の時間発展しか調べられないとします. この場合のホログラフィーは,実は緩和の固定点(グローバルな緩和時間など)の情報を 提供できるのでしょうか?どのような高次元多様体を導入するかが一番問題のように思い ます. またこれと関連することかもしれませんが,双曲変形と逆に、時間の効果を空間変 化の係数部分に押し込めた計量を導入したら何が起こるでしょうか?

模型に最適なテンソルネットワークを自動的に決定できるか? 例えばホログラフィック 軸方向にスピノンとホロンのブランチが自発的に分離していくようなテンソルネットワー クの自動構築ができるでのしょうか?これが可能であれば,多様な強相関電子系の世界の 解析もだいぶ進展しますね.

量子モンテカルロ法の幾何学構造 本編でも議論しましたが,新たに付加されたトロッ ター方向を眺めてみると,通常のQMCではチェッカーボード型の分解がなされます.し かしながら,この分解の場合,古典系の空間はAdS計量を持っていないように見えます. AdS計量を持った分解が可能であれば本稿で述べたように繰り込みのフローの見通しが良 くなるので,例えば計算の精度を向上させたり,あわよくば負符号問題を生じないQMC が可能ではないかという期待があります.ワールドライン,クラスター・フリップ,連続 虚時間などのアルゴリズムは,計量ということに関して何を行っていることになるので しょうか?これまで知られている負符号が消える問題は,基本的にはユニタリー変換で問 題の本質を捉えた基底に変換していることが大きいです.ということはMERA的な要素 が含まれている訳ですが,ここまで含めて再定式化できるのでしょうか?(そうなるとほ とんど MERA になってしまいますが…).

変分原理の模索 情報のエントロピーが保存量となるような適切な変分原理が存在する のか気になりますね(全系の波動関数がハミルトニアンの固有関数であっても,部分系は 時間的に変動出来ます). そのような理論の不変性と作用積分における AdS 計量の役割 が何らかの形で現れるのでしょうか?量子情報理論や情報幾何の方面で色々な定式化があ るはずと推測しますが,残念ながら私には勉強不足で現時点では不明です.

強相関電子論、ブラックホール物理、量子情報の接点 曲がった時空の導入に際して、一 般相対性原理のアナロジーで情報の保存を要請したのですが、もうひとつ一般相対論の大 きな柱である等価定理によれば、「物理現象を記述するための基準となる座標系を適当に 取れば、時空内の任意の点で、その点の近傍に着目する限り、そこの重力を局所的に消し 去ることが出来る.」ということになっており、これのアナロジーを考えると、hyperbolic deformation や sinusoidal deformation がどこまで一般化出来るのかという問題を扱うこ とになるかと思います.ただ残念ながら、強相関電子系の問題で一番重要なクーロン斥力 について言うと、おそらく「オンサイトクーロン斥力=ブラックホール」という対応に なっており、一筋縄ではいかないと思われます.分野が変わっても難問の出所はたいして 変わらないというところでしょうか….

あとは本稿で画像処理の問題を AdS/CFT に基づいて議論したのですが,情報ストレージの限界の問題,ループ量子重力理論や非可換幾何学との関連があると面白いと考えております.また画像圧縮が組みひも群の数理と関係しそうだということは本稿で触れました.

3次元データ処理に隠れた物理があるか? 結局,量子画像処理に話題の全てが詰まって いたということは,元々のホログラフィーに再び近づいているということのように感じる のですが,こうして色々と勉強してきた結果として,ホログラフィーから我々は何を本当 に学んだんだろうか?ということはやはり深く考えておかなくてはならないと思います. 一つの視点としては,量子画像処理は通常の光学におけるホログラフィーに比べて一次元 低いのですが,オリジナルの AdS/CFT 対応は光学のホログラフィーより「2次元高い」 所にいるということです.その場合には,まだ見過ごしている次元が一つあることになっ て,つまり「立体データ」の圧縮・再生にはまた新たな物理が眠っているのでしょうか?

10 最後にちょっとだけ哲学的な自問自答

「余剰次元に意味を見出そうとする働き」というキーワードで本稿を書きすすめてきた のですが、単なる数学的技巧以上の物理が隠れているようです.序論でも述べたように、 近年の固体電子論で幾何学に関する話題は増加しているのですが、その立場は、問題を見 通しよく解くために元々のヒルベルト空間の部分空間に着目すると、その空間は曲がった りねじれたりしていると考えれば都合が宜しいというものでした.このときに空間の次元 そのものが変動するような効果は取り扱われてはいません.従って、従来とはまた状況の 違った幾何学観が導入されたことになります.

テンソル積の次元は、エンタングルメント・エントロピーという量を通して見た場合、いわば系の空間次元と別に量子揺らぎを伝搬させるための隠れた次元です。この次元方向の空間的広がりの程度 χ や曲率は、問題に応じて(特に臨界・非臨界の別や元々の空間次元の大きさ、粒子間相互作用の型などに応じて)柔軟に変化する非常にダイナミカルなものです。逆に言うと、曲がった時空とその量子化に際しては、物質の存在形態に応じてこのような空間次元のダイナミカルな変化が起こることが一般的な特徴なのかもしれません。この意味では超弦理論の世界観と相通じるものがあります。プランク・スケールでは時空の概念すら曖昧であるということと、ネットワーク構造自体まで含めての階層的テンソル積の自動最適化を施すこと(前節で述べたようにどうすればいいかすぐには分かりませんが)には何らかのつながりを感じてしまいます。我々の物性物理の問題と超弦理論の問題ではエネルギー・スケールが果てしなく異なるのですが、それでもなおこのような類似性が見られることに興味を覚えます。

初めて AdS/CFT 対応を勉強したときに感じたことは、「数学的な目線に立てば肯定で きる双対性であっても、あまり常識的ではない場合、やはりそれは物理的実在と言うより は数学的な産物と思うべきなのではないだろうか?」ということで、自然に高次元時空に 突入する弦理論の見方には懐疑的でした.しかしながら、例えば普通の量子化に立ち戻っ てみると、粒子描像が実在ならばその双対である波動描像もまた実在であるということ は、少なくとも数学的には両者が単純にフーリエ変換で結ばれているからということに起 因していたはずです.粒子の性質が強く出ているときには波の性質はぼやけていて(色々 な周波数の成分が混ざっていて)、逆に波の性質が強く出ているときには粒子としての個 性は失われているわけです.バルク境界対応も、バルクから境界が切り離せないなら、当 然両者は同じ物理を表わす実在です.ホログラムの場合にも、三次元を伝搬する光とその 情報が転写された二次元面はいずれも確かな物理的実在です.そう思うと、ある数学的な 双対原理が存在して、一方が物理的実在ならば他方も実在といってよいのかもしれないと 次第に考え方を改めるようになりました.この問題はあまり深入りするとホロフラフィー の言葉が躍ったSFになってしまいそうなので危険だなと思っていますが、量子力学の相 補性・双対性には非常な深遠さがあるということを改めて感じております.

-471 -

11 まとめ

本稿では、エンタングルメント・エントロピーとその変分法への応用という物性物理の 最先端課題が、大きな可能性と他分野との関わりを持っていることを説明しました.本稿 のキーワード間の相関を図 25 に示します.ポイントをおさらいしておくと、剰余次元が 量子効果や問題を解く複雑さのエントロピーを吸収してくれて、局所的・平均場的な取り 扱いができるということです.やはり P. W. Anderson 先生は凄いということになるので しょうか.これを機に物性物理の立場から基礎的な理論物理の問題を発したり、ホログラ フィック原理を応用して物性物理の難問と呼ばれる種々の 2 次元強相関電子系にアタック したり、活発な研究活動を期待して筆をおきたいと思います.個人的には、画像に潜むブ ラックホールが「ブーン」と揺れて、画像データの余計なエントロピーを吸収すると、背 景にある量子系が「ユラユラ」してそれをうまく捨ててくれる、と楽しんでおります.

本稿で取り上げた内容は,仙台高専専攻科・松枝研所属の本田慎太朗君(現東北大院 工),伊藤真介君,遠藤基君,和田康利君と議論を重ねたものです.柴田尚和准教授(東 北大院理)には,多くの助言と大学インターンシップでの学生指導を頂きました.遠山貴 己教授,戸塚圭介准教授(京大基研),西野友年准教授(神戸大理),奥西功一准教授(新 潟大),引原俊哉准教授(北大),丸山勲助教,上田宏君(阪大基礎工),富田憲一准教 授,渡辺秀治君(山形大理),石原純夫准教授,那須譲治助教,高島宏和博士,大原潤博 士(東北大院理),金森悠博士(東北大院理→NECトーキン)には,本稿に述べた内容 に関して日頃から議論をして頂いております.山瀬博之博士,田中秋広博士(物材機構) にはセミナーの場で貴重なコメントを頂きました.この場を借りて皆様に感謝致します.

追記 本稿は東日本大震災の前後に執筆しました. 吟味を重ねましたが, なお書き足りな い点などがあります. 建設的なコメントを頂ければ幸いです. 仙台高専や東北大学では連 休明けから講義を再開しております. 震災のために仕事の質を落とすことのないよう努め ますので, 皆様にはこれまで以上のご指導ご鞭撻を宜しくお願い申し上げます.

参考文献

- [1] 数理科学 2007 年 12 月号「特集:「時空」への問いかけ 隠れた次元のミステリー」.
- [2] 数理科学 2007 年 6 月号「特集:物理における位相の世界 量子現象の幾何学」.
- [3] 数理科学 2004 年 2 月号「特集:幾何学的物理観 物理を語る幾何という言葉」.
- [4] 固体物理 2010 年 9 月号「解説:グラフェンの物理」「解説:トポロジカル絶縁体と ディラックコーン」.
- [5] 固体物理 2010 年 11 月号「特集号:ディラック電子系の固体物理」.
- [6] 吉川圭二著「弦の量子論・超弦理論への道」朝倉書店(1991).
- [7] J. Maldacena, "The Large N Limit of Superconformal Field Theories and Supergravity", Adv. Theor. Math. Phys. 2, 231 (1998).
- [8] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, "Gauge Theory Correlators from Non-Critical String Theory", Phys. Lett. B 428, 115 (1998).
- [9] Edward Witten, "Anti De Sitter Space And Holography", Adv. Theor. Math. Phys. 2, 253 (1998).
- [10] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, "Large N Field Theories, String Theory and Gravity", Phys. Rept. 323,183 (2000).
- [11] AdS/CFT 対応の解説がなされているストリング理論の新しい教科書としては、例 えば:Barton Zwiebach, "A First Course in STRING THEORY", Second Edition, CAMBLIDGE (2009); Katrin Becker, Melanie Becker, and John h. Schwarz, "STRING THEORY AND M-THEORY -A MODERN INTRODUCTION-", CAM-BRIDGE (2007).
- [12] Xiao-Gang Wen, "Quantum Field Theory of Many-Body Systems", OXFORD (2003); "Topological orders and edge excitations in FQH states", Adv. Phys. 44, 405 (1995).
- [13] B. Blok and X. G. Wen, "Effective theories of the fractional quantum Hall effect at generic filling fractions", Phys. Rev. B 42, 8133 (1990).
- [14] Y. Hatsugai, "Chern number and edge states in the integer quantum Hall effect", Phys. Rev. Lett. 71, 3697 (1993).
- [15] Y. Hatsugai, "Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function", Phys. Rev. B 48, 11851 (1993).

- [16] Jacob D. Bekenstein, "Black Holes and Entropy", Phys. Rev. D 7, 2333 (1973).
- [17] Jacob. D. Bekenstein, "Generalized second law of thermodynamics in black-hole physics", Phys. Rev. D 9, 3292 (1974).
- [18] S. W. Hawking, "Black holes and thermodynamics", Phys. Rev. D 13, 191 (1976).
- [19] Oleg Lunin and Samir D. Mathur, "Statistical Interpretation of the Bekenstein Entropy for Systems with a Stretched Horizon", Phys. Rev. Lett. 88, 211303 (2002).
- [20] Luca Bombelli, Rabinder K. Koul, Joohan Lee, and Rafael D. Sorkin, "Quantum source of entropy for black holes", Phys. Rev. D 34, 373 (1986).
- [21] M. Srednicki, "Entropy and area", Phys. Rev. Lett. 71, 666 (1993).
- [22] C. Callan and F. Wilczek, "On Geometric Entropy", Phys. Lett. B 333, 55 (1994).
- [23] Leonard Susskind and John Uglum, "Black Hole Entropy in Canonical Quantum Gravity and Superstring Theory", Phys. Rev. D 50, 2700 (1994).
- [24] D. Kobat and M. J. Strassler, "A Comment on Entropy and Area", Phys. Lett. B 329, 46 (1994).
- [25] R. Emparan, "Heat kernels and thermodynamics in Rindler space", Phys. Rev. D 51, 5716 (1995).
- [26] Amit Ghosh and P. Mitra, "Log correction to the black hole area law", Phys. Rev. D 71, 027502 (2005).
- [27] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, "Entropy, Entanglement, and Area: Analytical Results for harmonic Lattice Systems", Phys. Rev. Lett. 94, 060503 (2005).
- [28] A. Riera and J. I. Latorre, "Area law and vacuum reordering in harmonic networks", Phys. Rev. A 74, 052326 (2006).
- [29] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, "Entanglement in Quantum Critical Phenomena", Phys. Rev. Lett. 90, 227902 (2003).
- [30] Christoph Holzhey, Finn Larsen, Frank Wilczek, "Geometric and renormalized entropy in conformal field theory", Nucl. Phys. B 424, 443 (1994).
- [31] P. Calabrese and J. Cardy, "Entanglement Entropy and Quantum Field Theory", J. Stat. Mech. 0406, P002 (2004) [note added: arXiv:hep-th/0405152].

- [32] Pasquale Calabrese and John Cardy, "Entanglement entropy and conformal field theory", J. Phys. A 42, 504005 (2009).
- [33] J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, "Form factors of branch-point twist fields in quantum integrable models and entanglement entropy", J. Stat. Phys. 130, 129 (2007).
- [34] H. Casini, C. D. Fosco, and M. Huerta, "Entanglement and alpha entropies for a massive Dirac field in two dimensions", J. Stat. Mech. 0507, P007 (2005).
- [35] Michele Caraglio and Ferdinando Gliozzi, "Entanglement Entropy and Twist Fields", arXiv:0808.4094v2.
- [36] H. W. Blöte, John. L. Cardy, and M. P. Nightingale, "Conformal invariance, the central charge, and iniversal finite-size amplitudes at criticality", Phys. Rev. Lett, 56, 742 (1986).
- [37] J. Jacobsen, S. Ouvry, V. Pasquier, D. Serban, and L. F. Cugliandolo eds. "Les Houches 2008, Session LXXXIX, Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing", OXFORD (2009).
- [38] Michael M. Wolf, "Violation of the Entropic Area Law for Fermions", Phys. Rev. Lett. 96, 010404 (2006).
- [39] Dimitri Gioev and Israel Klich, "Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture", Phys. Rev. Lett. 96, 100503 (2006).
- [40] Dimitri Gioev, "Szegö limit theorem for operators with discontinuous symbols and applications to entanglement entropy", arXiv:math/0212215.
- [41] Weifei Li, Letian Ding, Rong Yu, Tommaso Roscilde, and Stephan Haas, "Scaling behavior of entanglement in two- and three-dimensional free-fermion systems", Phys. Rev. B 74, 073103 (2006).
- [42] T. Barthel, M-.-C. Chung, and U. Schollwöck, "Entanglement scaling in critical twodimensional femrionic and bosonic systems", Phys. Rev. A 74, 022329 (2006).
- [43] 川上則雄・梁成吉著「共形場理論と1次元電子系」岩波書店(1997).
- [44] 永長直人著「電子相関における場の量子論」岩波書店(1998).
- [45] S. R. White, "Density matrix formaulation for quantum renormalization group", Phys. Rev. Lett. **69**, 2863 (1992).

- [46] S. R. White, "Density-matrix algorithms for quantum renormalization group", Phys. Rev. B 48, 10345 (1993).
- [47] Shinsei Ryu and Tadashi Takayanagi, "Holographic Derivation of Entanglement Entropy from the anti-de Sitter Space/Conformal Field Theory Correspondence", Phys. Rev. Lett. 96, 181602 (2006)
- [48] Shinsei Ryu and Tadashi Takayanagi, "Aspects of Holographic Entanglement Entropy", JHEP 0608:45,2006.
- [49] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi, "Holographic Entanglement Entropy: An Overview", J. Phys. A 42, 504008 (2009).
- [50] Matthew Headrick, "Entanglement Renyi entropies in holograph theories", Phys. Rev. D 82, 126010 (2010).
- [51] Raphael Bousso, "The holographic principle", Rev. Mod. Phys. 74, 825 (2002).
- [52] Georgios Michalogiorgakis, "Entanglement entropy of two dimensional systems and holography", JHEP12(2008)068.
- [53] Jia-Rui Sun, "Note on Chern-Simons Term Correction to Holographic Entanglement Entropy", JHEP05(2009)061
- [54] Jose L. F. Barbon and Carlos A. Fuertes, "Holographic entanglement entropy probes (non)locality", JHEP04(2008)096.
- [55] Vijay Balasubramanian and Per Kraus, "A Stress Tensor For Anti-de Sitter Gravity", arXiv:hep-th/9902121.
- [56] Mans Henningson and Kostas Skenderis, "The Holographic Weyl anomaly", JHEP 9807, 023 (1998).
- [57] Per Kraus and Finn Larsen, "Holographic Gravitational Anomalies", arXiv:hep-th/0508218.
- [58] Kazuo Fujikawa and Hiroshi Suzuki, "Path Integrals and Quantum Anomalies", Oxford (2004).
- [59] 松枝宏明,「動的密度行列繰り込み群法―低次元強相関電子系の励起スペクトル―」, 物性研究 88, 812 (2007).

- [60] Kouichi Okunishi, "Wilson-Like Real-Space Renormalization Group and Low-Energy Effective Spectrum of the XXZ Chain in the Critical Regime", J. Phys. Soc. Jpn. 76, 063001 (2007).
- [61] Kouichi Okunishi and Tomotoshi Nishino, "Scale-free property and edge state of Wilson's numerical renormalization group", Phys. Rev. B 82, 144409 (2010).
- [62] Hiroshi Ueda and Tomotoshi Nishino, "Hyperbolic deformation on Quantum Lattice Hamiltonians", J. Phys. Soc. Jpn. 78, 014001 (2009).
- [63] Hiroshi Ueda, Hiroki Nakano, Koichi Kusakabe, and Tomotoshi Nishino, "Scaling Relation for Excitation Energy Under Hyperbolic Deformation", Prog. Theor. Phys. 124, 389 (2010).
- [64] T. Hikihara and T. Nishino, "Connecting distant ends of one-dimensional critical systems by a sine-square deformation", Phys. Rev. B 83, 060414 (2011).
- [65] Hosho Katsura, "Exact ground state of the sine-square deformed XY spin chain", arXiv:1104.1721.
- [66] Wenxin Ding and Kun Yang, "Entanglement entropy and mutual information in Bose-Einstein condensates", Phys. Rev. A 80, 012329 (2009).
- [67] Brian Swingle, "Entanglement Entropy and Fermi Surface", Phys. Rev. Lett. 105, 050502 (2010).
- [68] X. G. Wen and Q. Niu, "Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces", Phys. Rev. B 41, 9377 (1990).
- [69] Masaki Oshikawa and T. Senthil, "Fractionalization, Topological Order, and Quasiparticle Statistics", Phys. Rev. Lett. 96, 060601 (2006).
- [70] Paolo Zanardi, Paolo Giorda, and Marco Cozzini, "Information-Theoretic Differential Geometry of Quantum Phase Transitions", Phys. Rev. Lett. **99**, 100603 (2007).
- [71] Damian F. Abasto, Alioscia Hamma, and Paolo Zanardi, "Fidelity analysis of topological quantum phase transitions", Phys. Rev. A 78, 010301(R) (2008).
- [72] Alioscia Hamma, Radu Ionicioiu, and Paolo Zanardi, "Ground state entanglement and geometric entropy in the Kitaev model", Phys. Lett. A **337**, 22 (2005).

- [73] Alioscia Hamma, Radu Ionichioiu, and Paolo Zanardi, "Bipartite entanglement and entropic boundary law in lattice spin systems", Phys. Rev. A 71, 022315 (2005).
- [74] Alexei Kitaev and John Preskill, "Topological Entanglement Entropy", Phys. Rev. Lett. 96, 110404 (2006).
- [75] Michael Levin and Xiao-Gang Wen, "Detecting Topological Order in a Ground State Wave Function", Phys. Rev. Lett. 96, 110405 (2006).
- [76] Claudio Castelnovo and Claudio Chamon, "Entanglement and topological entropy of the toric code at finite temperature", Phys. Rev. B 76, 184442 (2007).
- [77] S. Iblisdir, D. Perez-Garcia, M. Aguado, and J. Pachos, "Scaling law for tolopogically ordered systems at finite temperature", Phys. Rev. B 79, 134303 (2009).
- [78] Hong Yao and Xiao-Liang Qi, "Entanglement Entropy and Entanglement Spectrum of the Kitaev model", Phys. Rev. Lett. 105, 080501 (2010).
- [79] Steven T. Flammia, Alioscia Hamma, Taylor I. Hughes, and Xiao-Gang Wen, "Topological Entanglement Renyi Entropy and Reduced Density Matrix Structure", Phys. Rev. Lett. 103, 261601 (2009).
- [80] Paul Fendley, Matthew P. A. Fisher, and Chetan Nayak, "Topological Entanglement Entropy from the Holographic Partition Function", arXiv:cond-mat/0609072.
- [81] Ian Affleck and Andreas W. W. Ludwig, "Universal Noninteger "Ground-state Degeneracy" in Critical Quantum Systems", Phys. Rev. Lett. 67, 161 (1991).
- [82] Daniel Friedan and Anatoly Konechny, "Boundary Entropy of One-Dimensional Quantum Systems at Low Temperature", Phys. Rev. Lett. 93, 030402 (2004).
- [83] Alexei Kitaev, "Anyons in an exactly solved model and beyond", Ann. Phys. (N.Y.) 321, 2 (2006).
- [84] Michael A. Levin and Xiao-Gang Wen, "String-net condensation: A physical mechanism for topological phases", Phys. Rev. B 71, 045110 (2005).
- [85] J. Nasu, A. Nagano, M. Naka, and S. Ishihara, "Doubly degenerate orbital system in honeycomb lattice: Implication of orbital state in layered iron oxide", Phys. Rev. B 78, 024416 (2008).
- [86] A. Hamma, D. A. Lidar, and S. Severini, "Entanglement and area law with a fractal boundary in a topological ordered phase", Phys. Rev. A 81, 010102 (2010).

- [87] O. S. Zozulya, Masudul Haque, and K. Schoutens, "Particle partitioning entanglement in itinerant many-particle systems", Phys. Rev. A 78, 042326 (2008).
- [88] Masudul Haque, O. S. Zozulya, and K. Schoutens, "Entanglement between particle partitions in itenerant many-particle states", arXiv:0905.4024v1.
- [89] S. Ostlund and S. Rommer, "Thermodynamics Limit of Density Matrix Renormalization", Phys. Rev. Lett. 75, 3537 (1995).
- [90] S. Rommer and S. Ostlund, "class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group", Phys. Rev. B55, 2164 (1997).
- [91] G. Vidal, "Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension", Phys. Rev. Lett. 98, 070201 (2007).
- [92] S. R. White and A. E. Feiguin, "Real-Time Evolution Using the Density Matrix Renormalization Group", Phys. Rev. Lett. 93, 076401 (2004).
- [93] A. E. Feiguin and S. R. White, "Finite-temperature density matrix renormalization using an enlarged Hilbert space", Phys. Rev. B 72, 220401(R) (2005).
- [94] F. Verstraete, D. Porras, and J. I. Cirac, "Density matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective", Phys. Rev. Lett. 93, 227205 (2004).
- [95] F. Verstraete and J. I. Cirac, "Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions", arXiv:cond-mat/0407066.
- [96] F. Verstraete, J. I. Cirac, and V. Murg, "Matrix Product States, Projected Entanglet Pair States, and variational renormalization group methods for quantum spin systems", Adv. Phys. 57, 143 (2008).
- [97] A. Isacsson and O. F. Syljuåsen, "Variational treatment of the Shastry-Sutherland antiferromagnet using projected entangled pair states", Phys. Rev. E 74, 026701 (2006).
- [98] V. Murg, F. Verstraete, and J. I. Cirac, "Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states", Phys. Rev. A 75, 033605 (2007).
- [99] V. Murg, F. Verstraete, and J. I. Cirac, "Exploring frustrated spin-systems using Projected Entangled Pair States (PEPS)", Phys. Rev. B 79, 195119 (2009).

- [100] L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, and J. I. Latorre, "Scaling of entanglement support for matrix product states", Phys. Rev. B 78, 024410 (2008).
- [101] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac, "Entropy Scaling and Simulability by Matrix Product States", Phys. Rev. Lett. 100, 030504 (2008).
- [102] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf, "Renormalization-Group Transformations on Quantum States", Phys. Rev. Lett. 94, 140601 (2005).
- [103] Xie Chen, Bei Zeng, Zheng-Cheng Gu, Isaac L. Chuang, and Xiao-Gang Wen, "Tensor-product representation of a topological ordered phase: Necessary symmetry conditions", Phys. Rev. B 82, 165119 (2010).
- [104] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, "Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order", Phys. Rev. B 82, 155138 (2010).
- [105] Zheng-Cheng Gu, Michael Levin, and Xiao-Gang Wen, "Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions", Phys. Rev. B 78, 205116 (2008).
- [106] Zheng-Cheng Gu, Michael Levin, Brian Swingle, and Xiao-Gang Wen, "Tensorproduct representations for string-net condensed states", Phys. Rev. B 79, 085118 (2009).
- [107] Zheng-Cheng Gu and Xiao-Gang Wen, "Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order", Phys. Rev. B 80, 155131 (2009).
- [108] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. T. Weng, and T. Xiang, "Second Renormalization of Tensor-Network States", Phys. Rev. Lett. 103, 160601 (2009).
- [109] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T. Xiang, "Renormalization of tensor-network states", Phys. Rev. B 81, 174411 (2010).
- [110] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, "Valence bond ground states in isotropic quantum antiferromagnets", Commun. Math. Phys. 115, 477 (1988).
- [111] Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, "Rigorous Results on Valence-Bond Ground States in Antiferromagnets", Phys. Rev. Lett. 59, 799 (1987).

- [112] Román Orús, "Geometric entanglement in a one-dimensional valence-bond solid state", Phys. Rev. A 78, 062332 (2008).
- [113] Heng Fan, Vladimir Korepin, and Vwani Roychowdhury, "Entanglement in a Valence-Bond Solid State", Phys. Rev. Lett. **93**, 227203 (2004).
- [114] R. B. Laughlin, "Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations", Phys. Rev. Lett. 50, 1395 (1983).
- [115] Bei Zeng, Hui Zhai, and Zhan Xu, "Entanglement properties of some fractional quantum Hall liquids", Phys. Rev. A 66, 042324 (2002).
- [116] S. Iblisdir, J. I. Latorre, and R. Orús, "Entropy and Exact Matrix-Product Representation of the Laughlin Wave Function", Phys. Rev. Lett. 98, 060402 (2007).
- [117] Masudul Haque, Oleksandr Zozulya, and Kareljan Schoutens, "Entanglement Entropy in Fermionic Laughlin States", Phys. Rev. Lett. 98, 060401 (2007).
- [118] O. S. Zozulya, M. Haque, K. Schoutens, and E. H. Rezayi, "Bipartite entanglement entropy in fractional quantum Hall states", Phys. Rev. B 76, 125310 (2007).
- [119] Oleksandr Zozulya, Masudul Haque, and Nicolas Regnault, "Entanglement signatures of quantum Hall phase transitions", Phys. Rev. B 79, 045409 (2009).
- [120] B. A. Friedman and G. C. Levine, "Topological entropy of realistic quantum Hall wave functions", Phys. Rev. B 78, 035320 (2008).
- [121] Daniel P. Arovas, Assa Auerbach, and F. D. M. Haldane, "Extended Heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect", Phys. Rev. Lett. 60, 531 (1988).
- [122] Hiroshi Ueda, Isao Maruyama, and Kouichi Okunishi, "Uniform Matrix Product State in the Thermodynamics Limit", J. Phys. Soc. Jpn. 80, 023001 (2011).
- [123] Naokazu Shibata, "Quantum Hall Systems Studied by the Ensity Matrix Renormalization Group Method", Prog. Theor. Phys. Suppl. 176, 182 (2009).
- [124] Norikazu Tomita, "Many-body wave functions approximated by the superposition of spin-projected nonorthogonal Slater determinants in the resonating Hatree-Fock method", Phys. Rev. B 69, 045110 (2004).
- [125] Y.-Y. Shi, L.-M. Duan, and G. Vidal, "Classical simulation of quantum many-body systems with a tree tensor network", Phys. Rev. A 74, 022320 (2006).

- [126] L. Tagliacozzo, G. Evenbly, and G. Vidal, "Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law", Phys. Rev. B 80, 235127 (2009).
- [127] G. Vidal, "Entanglement Renormalization", Phys. Rev. Lett. 99, 220405 (2007).
- [128] G. Vidal, "Class of Quantum Many-Body States That Can Be Efficiently Simulated", Phys. Rev. Lett. 101, 110501 (2008).
- [129] G. Evenbly and G. Vidal, "Algorithms for entanglement renormalization", Phys. Rev. B79, 144108 (2009).
- [130] G. Evenbly and G. Vidal, "Entanglement Renormalization in Two Spatial Dimension", Phys. Rev. Lett. 102, 180406 (2009).
- [131] Robert N. C. Pfeifer, Glen Evenbly, and Guifré Vidal, "Entanglement renormalization, scale invariance, and quantum criticality", Phys. Rev. A 79, 040301(R)(2009).
- [132] Philippe Corboz and Guifré Vidal, "Fermionic multiscale entanglement renormalization", Phys. Rev. B 80, 165129 (2009).
- [133] G. Evenbly, R. N. C. Pfeifer, V. Picó, S. Iblisdir, I. Tagliacozzo, I. P. McCulloch, and G. Vidal, "Boundary critical phenomena with entanglement renormalization", Phys. Rev. B 82, 161107 (2010).
- [134] P. Silvi, V. Giovannetti, P. Calabrese, G. E. Santoro, and R. Fazio, "Entanglement renormalization and boundary critical phenomena", J. Stat. Mech. (2010) L03001.
- [135] Masafumi Fukuma, So Matsuura, and Tadakatsu Sakai, "Holographic Renormalizarion Group", Prog. Theor. Phys. 108, 375 (2002).
- [136] Brian Swingle, "Entanglement Renormalization and Holography", arXiv:0905.1317.
- [137] 西野友年,日永田泰啓,奥西巧一,"密度行列繰り込み群",日本物理学会誌 55,763 (2000).
- [138] A. B. Zomolodchikov, ""Irreversibility" of the flux of the renormalization group in a 2D field theory", JETP Lett. 43, 730 (1986).