Viva Origino 33 (2005) 41-172

P67 CHEMICAL EVOLUTION TO OLIGOPEPUTIDE IN SOLID PHASE IRRADIATED WITH VACUUM ULTRAVIOLET LIGHT AND SOFT X-RAY.

T. Matsui¹, K. Nakagawa^{1,2,3}, F. Kaneko³, M. Tanaka⁴, T. Kitada¹,

Y. Izumi¹, M. Kamohara¹, A. Yokoya⁵

1 Graduate School of Cultural Studies and Human Science, Kobe University,

Hyogo 657-8501, Japan, matsui@radix.h.kobe-u.ac.jp

2 Faculty of Human Development, Kobe University,

Hyogo 657-8501, Japan, nakagawa@kobe-u.ac.jp

3 Graduate School of Science and Technology, Kobe University,

Hyogo 657-8501, Japan

4 Graduate School of Science and Engineering, Waseda University, Tokyo 169-0072, Japan

5 SPring-8, Japan Atomic Energy Research Institute, Mikazuki-cho, Hyogo 679-5148, Japan

We determined quantum efficiencies of chemical evolution from glycyl-glycine $(Gly)_2$ to glycyl-glycyl-glycine $(Gly)_3$ and glycyl-glycyl-glycyl-glycine $(Gly)_4$ induced by 146 nm vacuum ultraviolet (VUV) and near oxygen K-edge soft X-ray irradiation, and in an attempt to examine the possibility of chemical evolution of amino acids and peptides on the surface of meteorites in space.

We determined photo-production quantum efficiency of Gly, diketopiperazine (dkp), $(Gly)_3$ and $(Gly)_4$ in $(Gly)_2$ solid to be $(2.8\pm0.1)\times10^{-2}$, $(2.1\pm0.3)\times10^{-4}$, 7×10^{-5} , $(4.3\pm0.3)\times10^{-4}$ respectively for 146 nm VUV, and in the case of soft X-ray irradiation, the quantum efficiency of Gly, $(Gly)_3$ (Gly)4 were determined to be 42 ± 2 , 0.5 ± 0.07 , more than 0.04 for 530 eV and 32 ± 5 , 0.4 ± 0.02 , more than 0.06 for 540 eV.

We concluded less reactive steps have advantage in chemical evolution and secondary electron chain reaction is mainly in soft X-ray region. We suggested that the chemical evolution to oligopeputide occurred to use wide range energy in the space.