56

<u>1-B-02</u> Arterial blood pressure response to severe passive heating at rest relates to hyperthermia-induced hyperventilation

Naoto FUJII¹, Masashi ICHINOSE², Bun TSUJI³, [,] Kazuhito WATANABE³, Narihiko KONDO⁴, Takeshi NISHIYASU³

¹ JSPS, ² Meiji University,

³University of Tsukuba, ⁴Kobe University

Purpose :

The purpose of this study was to investigate that whether the mean arterial blood pressure (MAP) change during passive heating at rest is associated with hyperthermia-induced hyperventilation in humans.

Methods:

Eighteen healthy males were subjected to passive heating using legs-only hot water immersion and a water-perfused suit until the subject could no longer endure the heat. We then divided the subjects into two groups: in MAP_{NOTINC} (n = 8) MAP did not increase by >3 mmHg (-11.5 to 2.3 mmHg), and in MAP_{INC} (n = 10) MAP increased by >3 mmHg (9.7 to 32 mmHg).

Results and Discussion:

Heating-induced increases in esophageal temperature were similar in MAP_{NOTINC} and MAP_{INC} (+2.3±0.3 vs. +2.4±0.4 °C). However, subjects in MAP_{NOTINC} showed significantly greater increases in minute ventilation (V_E) (+19.1±7.8 vs. +7.1±4.7 l min⁻¹, P < 0.05) and greater decreases in end-tidal CO₂ pressure (-15.6±4.3 vs. -5.1± 4.3 mmHg, P < 0.05) than those in MAP_{INC}. Among all subjects, heating-induced changes in V_E significantly and negatively correlated with heating-induced changes in MAP (r = -0.74, P < 0.05). Our results suggest the extent of the MAP response to passive heating at rest is associated with the degree of hyperthermia-induced hyperventilation.

Key words: hyperthermic hyperpnea; respiratory alkalosis, systemic blood pressure

1-B-03 Effect of pre-exercise core temperature on circadian variation in hyperthermic hyperventilation during exercise

Bun TSUJI¹, Naoto FUJII², Narihiko KONDO³, Takeshi NISHIYASU¹

¹ Graduate School of Comprehensive Human Sciences, University of Tsukuba, ² JSPS Fellow, ³ Faculty of Human Development, Kobe University

Purpose: Hyperthermia during exercise leads to hyperventilation. We recently reported that core temperature (T_c) threshold for hyperventilation as well as pre-exercise resting T_c was higher by 0.6°C in evening (PM) than morning (AM) However, the change in T_c from resting to the threshold was same between AM and PM. We therefore tested the hypothesis that even though higher resting T_c at PM is adjusted to the level at AM before exercise, T_c threshold for hyperventilation is still higher at PM than AM.

Methods: Nine male subjects performed cycle exercise at 50% of peak oxygen uptake in the heat (37°C) at AM (6:00) and PM (18:00). Before each exercise, subjects were immersed in water (18°C) for 25-min at AM and 50-min at PM to detect esophageal temperature (T_{es}) threshold for hyperventilation (Tsuji *et al.* 2009) and to adjust T_{es} to same level.

Results and Discussion: Despite same resting $T_{\rm es}$ before exercise after the immersion at AM and PM (35.6 ± 0.7 vs. 35.7 ± 0.7°C), $T_{\rm es}$ threshold for hyperventilation was significantly higher at PM than AM (37.2 ± 0.7 vs. 36.5 ± 0.7°C). The finding suggests that even though elevated $T_{\rm c}$ in evening is adjusted to the level in morning, $T_{\rm c}$ threshold for hyperventilation is higher in evening than morning.

Key Words: Hyperpnea; Hyperthermia; Thermoregulation; Circadian rhythm; Precooling