論文

[2085] アンボンド型充塡鋼管コンクリート構造の曲げせん断実験 と弾塑性解析

正会員〇佐藤孝典(清水建設技術研究所)

正会員 下戸芳寛(清水建設原子力本部)

1. はじめに

柱部材が高耐力、かつ高靱性であれば、設計上、①曲げ終局耐力(Mu)の向上、②構造特性係数 (D s値)の低減、③柱と梁の強度比(cMu/BMu)の低減、④層間変形角(R)制限の緩和、⑤軸力比 (N/No)制限の緩和、等に結びつけることができる。鉄筋コンクリート構造(以下、RC構造と略す) では、せん断破壊、曲げ圧縮部の脆性破壊、付着割裂破壊等の原因によって部材の靱性に乏しい ため、これらの点で厳しい制約がある。これらを改善するために、筆者等は数年前より「アンボ ンド型充填鋼管コンクリート構造」(以下、UTC 構造と略す)を提案してきた^{1,2,13)}UTC 構造はRC 構造を円形鋼管で拘束したもので、コンクリートのコンファインド効果を期待している。さらに それが最大限に発揮されるように、鋼管とコンクリートの界面に分離材が施されている。図-1に 示すように、梁はRC構造、柱はUTC 構造とすると、鋼管が充填コンクリートの軸変形に追従する ように柱頭、柱脚に約30mmの変形吸収部を設けている。

本報告では高層建物の柱部材を模擬した1/2 縮小モデルの曲 げせん断実験を行い、物理現象を説明する弾塑性解析モデルを 提案し、動的解析用の復元力特性のモデル化に必要な折れ曲が り点を求める。この弾塑性解析は、材料の応力-歪関係を用い、^{RC構造} 平面保持の仮定に基づいて計算される。

その際、(a)コンクリートの応力ー歪関係は、昨年報告したコンファインド効果を考慮したものを用いている点³⁾また(b)断面の曲げ圧縮部コンクリートでは支圧効果 ($\sqrt{\frac{A_c}{A_1}}$, A_1 :支圧面積、 Ac:支承面積)を導入している点に特徴がある。

2.実験概要
2.1 試験体

試験体は変形吸収部を有するUTC 構造柱部材の1/2 縮小モデ 図-1 UTC 構造柱とRC構造梁 ルである。試験体一覧を表-1に示す。パラメータは、せん断スパン比(M/QD)、軸力比(N/N₀)、コ ンクリート強度(_c())、鉄筋量(Pg)、鋼管板厚(t)である。試験体の形状を図-2に示す。

			_												1	1
	せん断	軸力 コンクリート			鉄筋				┩ 管			·	かわ	сов…上稲強度		
it south	スパン比	N/No	N	c##	eB	¥	配 訪	ROY	R.OT	яB	t	204	3 Ø T	sE	兟	cE …コンクリート
名勒	N/00		(t)	(Kg cal)	K 10Kg call		(肤肪比)	(Kg cal)	(Kg cal)	(10 Kg caD	(100)	(Kg cal)	(Kg cal)	(10 Kg caD		のヤング係数
und		0.4	428	574	3,25	0.192										レーボアソン比
UMNO	2.0	0.0	0	560	3.52	0.199	10-D16(Pg=1.6%)	4190	5810	2.13					線返	
DINR	10.	0.8	856	574	3.56	0.200					5.86	3760	4700	2.17		R Ø Y … 鉄筋の降伏預度
IMCA	1900-	<u> </u>	350	408	3.45	0.217									単調	Rστ…鉄筋の引張強度
	10000		1000		0.40	h 000	10 000/0- 2 00	2020	5050	2.05	í		l		—	E MATOLY NOT
UMR3		0.4	428	560	3.61	0.205	10-022 (PE=3. CA)	3030	0000	2.00						RC
UMS9]		478	577	3.44	0.192	10-D16(Pg=1.6%)	4190	5810	2.13	8.74	3580	4860	2.16	操返	t …板厚
USO			428	551	3.32	0.212	10-D16 (Pg=1.6%)	4190	5810	2.13						調管の路伏論度
USC4	1 1.0	0.4	359	408	3.45	b.217					5.86	3760	4700	2.17	単胡	SUY ME SPHUCH
115123	10.	<u> </u>	428	545	3.43	0.187	10-D22 (Pg=3, 22)	3830	5850	2.05	1				繰返	sσ⊤…鋼管の引張強度
	1 ma .				0.50	h 000	10 010/0- 1 60	4100	5910	2 12	9 74	2590	4960	2 16	1	F …調管のヤング係数
1559	1 HODman)		14 /X	1 574	3.50	U. 20	110-01044=1.04	1 4130	0010	6.10	10.14	1 3000	1 4000	2.10		

表-1 試験体及び材料試験結果一覧

試験部位の上下端15mmは変形吸収部になっており、この 部分では充填コンクリートは鋼管で被覆されていない。 鋼管内面の分離材(アスファルト)の塗布はホットメル ト式吹付法によった。その平均塗布厚は約 0.2mmであっ た。コンクリートの強度管理はφ100 ×h200のテストピ ースの圧縮試験を毎週一回 5本行い、最大最小を除いた 3本の平均値を採用し、試験体の曲げ加力時の材令に対 応させた。鋼管は残留歪を取り除くため焼鈍処理を行っ た。それぞれの材料試験結果一覧を表-1に示す。 2.2 加力装置及び計測方法

加力は、一定軸力下での逆対称曲げせん断加力とした。 加力装置は、図-3に示すとおり、2台の軸変形制御用ア クチュエータを用いたものである。所定の軸力を導入し た後、加力ビームを介して正負交番繰返しせん断力を載 荷した。繰返し回数は、部材角 R=1/200,1/100,1/50 で 3回ずつ、それ以外の変形で2回ないし1回とした。

水平変位は、上端スタブ及び下端スタブをそー れぞれ不動点とした計測治具に沿って4点また__ は8点で計測した。また軸変形は、上端スタブ と下端スタブの間及び変形吸収部をまたぐ区間一 を計測した。

鋼管歪は、材軸方向の 5断面または 9断面の 円周方向 0、45、90、135°、180°の 5ヵ所の三 軸歪を計測した。そして、鉄筋歪は、材軸方向・ の 5断面または 8断面の 4本または 6本の鉄筋 の歪を計測した。

3. 実験結果

3.1 荷重-変形関係

UMN8以外は、加力装置の限界である部材角 R=10%まで所定の軸力を保持したまま安定した履歴 ループを描いた。ここでは、図-4~図-9に一定軸力下におけるせん断力(Q)-部材角(R)-部材 軸変形(δ_N)関係を点線(---)で部材角 R=4% までの範囲を示す。図中には、鉄筋の圧縮降伏 時(Δ)、引張降伏時(Δ)、鋼管の円周方向降伏時(\Box)、最大せん断力時(o)、最大曲げモーメン ト時(\bullet)の点を示す。また、軸力による付加曲げモーメントを考慮する線(----)も記入する。そ して、後で述べる解析結果の履歴ループも実線(----)であわせて示す。表-2に実験結果の一覧 を示す。これらの図表により、以下のことがわかる。

(a)UMN8、USR3以外は、部材角R=4%を越えても最大せん断力時の曲げモーメント(M max) は確保 されており、安定した曲げ破壊をしている。USR3及びUMN8であっても、曲げモーメントは部 材角 R=2% までは耐力低下をしない。

(b)鋼管降伏時(□)のせん断力は、最大せん断力(○)にほぼ等しい。

(c)鉄筋の圧縮降伏(ふ)現象は、部材の履歴ループにほとんど影響しない。

せん版力用 100 tアクチュン (2台美列)

ğ 🛃

反カフレーム

図-3 加力装置

- 509 -

(d)繰返しのループ形状は、ほぼ紡			表-	2	実験結	果-	覧						
毎刑の形状で いずれのループ	试験体	ŧ	助	鉄筋の	压缩降伏時	鉄筋の	引張降伏時	調管の	円萵降伏時	最大	、荷重時	最/	、耐力時
壁主の形状に、1940のルーク	名称	N/No	N(t)	RCO	acMγ (tm)	R (%)	∎тMγ (tm)	R CO	sMy (tan)	RCO	M _{max} (tm)	R (%)	Mu(tm)
も安定している。	umo	0.4	428	0.10	13.7	0.62	44.2	1.03	54.8	1.96	62.4	2.88	63.9
(小井本玉)こっ)、ナ リルロントがたち	umno	0.0	0	1		0.33	11.3	7.70	20.3	7.70	20.3	7.70	20.3
(P)軸変形について、UMN8は部材用	umn8	0.8	856	0.00	0.0			0.54	55.0	1.03	60.7	1.50	62.4
R=2% 以降で急激な軸縮みを示	umc4		359	0.51	30.2	1.04	41.3	1.55	49.6	2.75	55.4	9.26	57.7
	UMR3		428	0.10	11.0	1.50	55.2	1.49	58.5	3.04	67.8	7.83	71.4
すが、それ以外は繰返しに応じ	UMS9		478	0.18	23.2	0.53	41.2	0.90	50.9	1.94	62.4	9.76	68.8
て谷々に縮む	USO	s0 0.4 sC4	428	0.24	27.7	0.63	44.7	1.98	61.5	2.48	62.5	3.74	63.1
	USC4		359	0.50	30.3	1.15	43.2	2.19	50.7	4.24	57.7	8.09	59.6
(f)部材角 R=2% 時の軸変形量は、	USR3		428	0.15	19.5	0.42	42.9	1.86	50.1	2.03	64.9	2.03	64.9
動力道1比の始0位マナフ	USS9		478	0.16	22.5	0.51	39.6	1.97	63.5	1.97	63.5	7.82	71.8
軸刀等八吋の約2倍でめる。			进) H = - K C	:: :一定軸 : 軸力に	ウ下に	、おけるせん けいゆげをき	厳力が 出ました) 武大となる 中げそーメ	ときて	ある。 ド最大となる	5と書	である。
3.2 鉄筋の降伏領域の進展													
図-10 に一例としてUMR3の鉄筋の	锋伏特	狼坞	初	進思	瞅况_	₩	↓ ↓ ↓ ↓			_		.	
を示す。この図より、ヒンジゾーンは	は端語	部	(変	形吻	如断			-			-		:: #
町)から直径(D)の長さ区間と判断できる。これは他の													
試験体についても同様である。						-#		-	-	-			
3.3 包絡線の比較								≁			→		

図-11 に軸力による付加曲げを考慮した曲げモーメン ト(M)-部材角(R)関係を包絡線でM/ODが異なる場合の 比較を示す。そして、後で述べる解析結果も実線(一) であわせて示す。この図より、せん断スパン比M/QDが異 №0.5x, 0-44t なっても、M-R 関係上ではほぼ一致する。

4. 解析的検討

4.1 解析仮定

R=1 0% 0=61+

R=2 0% $\Omega=71t$

ることができる。そこで材料の応力(σ)-歪(ε)関係をもとに曲げモーメント(M)-曲率(φ) 関係をもとめ、曲率(φ)にヒンジ長さ(L 。)を乗じて部材角(R)とする弾塑性解析モデルを 提案する。

- (i) コンクリート及び鉄筋は中立軸を共有し、それらの歪は図-12 に示すとおり中立軸からの 距離に比例する。(平面保持)
- (ii) コンクリートは昨年報告した中心圧縮実験結果に基づいており、鋼管によるコンファイン ド効果を考慮し、応力---企関係は図-13 に示すとおりである。図-14 に中心圧縮実験結果 とこのモデルを比較する。なお、鋼管はこのコンファインド効果のみに寄与し軸方向応力 は負担しないものとする。
- (m)鉄筋は図-15 に示すとおりバイリニアとする。
- (iv)曲げ圧縮部のコンクリート強度は、図-16に示すようにコンファイン効果を生み出す鋼管

4.2 解析結果

図-4~図-9に実験結果(---)と解析結果(一)の履歴ループの比較を示す。載荷及び除荷とも によく合っいる。そして、高軸力のUMN8についても最大耐力を越えて下降域に至ってもうまく 追従できている。

次に、断面内での物理現象を追跡するために図-19 に軸力比(N/Na)と部材角(R)の関係、図 -20 に軸力比(N/No)と曲げモーメント(M)の関係を示し、それぞれの図中に鋼管降伏時と最大耐 力時の実験結果を示す。これは、UMO(o,●)、UMNO(☆,★)、UMN8(□,■)、USO(△,▲)に活用で

きる例である。UMO の解析結果(◊)を読み取る と、鉄筋の圧縮降伏が(R,M)=(0.3%,24tm)、引 張降伏が(R.M)=(0.7%,44tm)、鋼管の降伏が (R,M)=(1.8%,56tm)、最大耐力が(R,M)=(3.3%, 60tm) となる。このように、部材の軸力レベル 虔 によって物理現象を順に追跡することができる。言 また、図中に示すように軸力が変動する場合(0 →1→2→3→4)についても、応用することができる。 また、動的解析用の復元力特性モデルを作成す る際に必要な折れ曲がり点をこれらの各事象の 発生点とすることができる。

5. まとめ

柱頭、柱脚に変形吸収部を有するUTC 構造柱 部材の一定軸力下における曲げせん断実験を行 った(図-4~図-11)。そして、材料の応力-歪 関係から部材の履歴ループを描く弾塑性解析モ デルを提案し(図-12~図-18)、各種物理現象 を順に追跡できる図を示し(図-19~図-20)、 既存の動的解析用の復元力特性モデルの折れ曲 がり点を求めた。

謝辞 本研究の実施に当たり、懇切なご教示を いただいた東京大学教授青山博之博士、大阪大 学教授鈴木計夫博士ならびに当社プロジェクト メンバーに深甚なる謝意を表します。

図-19 軸力比-部材角関係

図-20 軸力比-曲げモーメント関係

参考文献

- 1) 下戸、佐藤: "アンボンド型充填網管コンクリート構造の中心圧縮実験"第8回コンリート工学年次構演論文集(1986年) 2) 佐藤、下戸、渡辺: "アンボンド型充填網管コンクリート構造のせん斯伝達機構"第9回コンリート工学年次構演論文集(1987年) 3) 佐藤、下戸、渡辺: "アンボンド型充填網管コンクリート構造の中心圧縮性状とその定式化"第10回コンクリート工学年次論文報告集(1988年) 4) 坂田、林、和田、黒正: "軸方向変形の拘束効果を考慮した鉄筋コンクリートはりの弾型性性状に関する実験研究(1987.10)