Entomological Science, 2002, 5(4): 391-397

New Prey-predator Association in Aposematic Pyrrhocorid Bugs: Antilochus coqueberti as a Specialist Predator on Dysdercus Species

Katsuyuki KOHNO*, Keiichi TAKAHASHI** and Mitsutaka SAKAKIBARA***

Okinawa Subtropical Station, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, 907–0002 Japan

Abstract. We investigated the prey-predator relationship between aposematic pyrrhocorid bugs, Antilochus coqueberti and Dysdercus cingulatus. They are similar in appearance and often found in the same habitat simultaneously. Carnivory of A. coqueberti on D. cingulatus and D. decussatus was observed in the field, and A. coqueberti could not develop when experimentally fed on only plant materials, strongly indicating the obligate carnivory of A. coqueberti. While A. coqueberti did not prey on bugs in the families Lygaeidae, Largidae, Coreidae, and Rhopalidae that share the aposematic body coloration with A. coqueberti and D. cingulatus, A. coqueberti preyed on all the pyrrhocorids and alydids provided, regardless of their body coloration. Visual resemblance is only partially involved in the prey preference of A. coqueberti. We conclude that A. coqueberti is the obligate predator specialized to Dysdercus species.

Key words: Pyrrhocoridae, Dysdercus cingulatus, mimicry, carnivory, phytophagy, prey preference.

Introduction

Among heteropterous bugs, strong resemblance or mimicry is occasionally observed between a putative prey and its predator when both are aposematic and live in the same habitat (Edmunds, 1974; Iwata, 1975, 1978a, b; Ahmad & Schaefer, 1987; Schaefer, 1997, 1999; Nishida, 1999; Nishida *et al.*, 2001). This type of mimicry can be theoretically divided into Müllerian mimicry and aggressive mimicry (Wickler, 1968). The former refers to a situation in which both participants are noxious and the common aposematic signal is enhanced by living together; the latter refers to a prey-predator association where the specialist predator mimics the aposematic prey as a 'the wolf in sheep's clothing'.

Schaefer (1997) reported several cases of preypredator associations in heteropterous bugs, in which preys were herbivorous pyrrhocorids and the predators were predacious reduviids; he suggested Müllerian mimicry for those pyrrhocorid-redviid associations. Iwata (1975, 1978a, b) reported a similar prey-predator association, but the prey and predator were both pyrrhocorids. However, almost all evidence for prey-predator association in pyrrhocorids has been anecdotal until Nishida *et al.* (2001) showed the first convincing evidence for the prey-predator association in pyrrhocorids in West Java, Indonesia: *Raxa nishidai* Schaefer fed exclusively on *Melamphaus faber* (Fabricius), and both are similarly aposematic. As the authors pointed out, the absence of common predators on these two pyrrhocorids suggests that Müllerian mimicry is no longer exerting selection pressure on maintaining this association.

Our preliminary observations suggested that Antilochus coqueberti (Fabricius) (Pyrrhocoridae) dwelled near aggregations of the cotton stainer Dysdercus cingulatus (Fabricius) (Pyrrhocoridae), particularly in and around Hibiscus shrubs on Ishigaki-jima Island, the southernmost part of the Ryukyu Islands. These two species look very similar, having aposematic red and black coloration. Antilochus coqueberti has been reported as a predator of the cotton stainers, Dysdercus spp. (Pyrrhocoridae) (Corbett, 1923; Chauthani & Misra, 1966; Iwata, 1975, 1978a, b; Quayum & Nahar, 1980; Dhiman, 1985), whereas some reports treated A. coqueberti as a herbivore attacking malvaceous plants such as Hibiscus tiliaceus and cotton

^{*} E-mail address: kohno@affrc.go.jp

^{**} Present address: JICA/JOCV Palau Office, P. O. Box 6047, Koror, 96940 Republic of Palau.

^{***} Present address: National Agricultural Research Center for Tohoku Region, Morioka, Iwate, 020-0198 Japan.

392

Katsuyuki KOHNO, Keiichi TAKAHASHI and Mitsutaka SAKAKIBARA

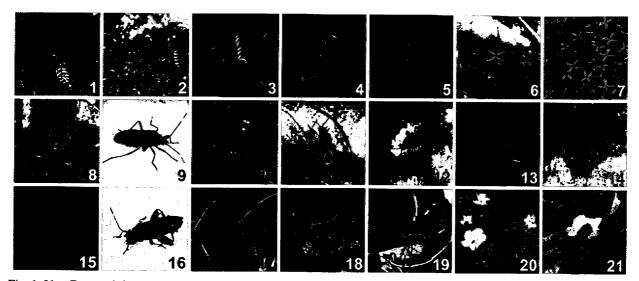


Fig. 1-21. Bug and host plant species used in the experiments. 1, Antilochus coqueberti, Pyrrhocoridae; 2, Dysdercus cingulatus, Pyrrhocoridae; 3, D. poecilus, Pyrrhocoridae; 4, Dysdercus sp. probably D. solenis, Pyrrhocoridae; 5, Dysdercus sp. probably D. mesiostigma, Pyrrhocoridae; 6, D. decussatus, Pyrrhocoridae; 7, D. philippinus, Pyrrhocoridae; 8, Physopelta cincticollis, Largidae; 9, P. gutta, Largidae; 10, Oncopeltus nigriceps, Lygaeidae; 11, Graptostethus servus, Lygaeidae; 12, Spilostethus hospes, Lygaeidae; 13, Thunbergia sanguinaria, Lygaeidae; 14, Armatillus sp., Pyrrhocoridae; 15, Riptortus clavatus, Alydidae; 16, Daclera levana, Alydidae; 17, Dasynus coccocinctus, Coreidae; 18, Leptocoris augur, Rhopalidae; 19, Leptocoris rufomarginata, Rhopalidae; 20, Hibiscus makinoi, Malvaceae; 21, H. tiliaceus, Malvaceae.

plant (Kawasawa & Kawamura, 1977; Singh & Tomar, 1977). In spite of the relatively detailed description of the predatory habit of *A. coqueberti* by Iwata (1975, 1978a, b), quantitative and experimental tests are still necessary before concluding that *A. coqueberti* is predaceous, as there are several records of predation or cannibalism by pyrrhocorids which are recognized to be basically phytophagous (Ahmad & Schaefer, 1987).

We carried out field observations and laboratory experiments to clarify to what extent A. coqueberti is predacious, and to evaluate the prey preference of A. coqueberti for various heteropterous bugs inhabiting the southwest islands of Japan.

Materials and Methods

Antilochus coqueberti, the putative predator

Antilochus coqueberti is rather rare but widely distributed in Southeast Asia, Taiwan and up to Ishigakijima Island (Kawasawa & Kawamura, 1977; Miyamoto & Yasunaga, 1989; Yasunaga et al., 1993). Its body color is highly aposematic, bright red except for the black tips of its forewings (see Fig. 1). Its appearance and body size are similar to those of the cotton stainer Dysdercus cingulatus (see Fig. 2).

Dysdercus species, the putative prey

In the Ryukyu Islands, we found at least six species of *Dysdercus*. All these *Dysdercus* are aposematic, but

they can be divided roughly into two groups based on their body colorations. Dysdercus cingulatus (Fabricius), D. poecilus (Herrich-Schaeffer), Dysdercus sp. probably D. solenis (Herrich-Schaeffer) and Dysdercus sp. probably D. mesiostigma Distant are red and black, often with black spots on the forewings (see Figs. 2-5), while D. decussatus Boisduval and D. philippinus Herrich-Schaeffer are red and black with a large white cross on the forewings (see Figs. 6, 7). The genus Dysdercus includes many critical pests of cotton and other malvaceous crops in the world, especially in the tropics to subtropics (Freeman, 1947; van Doesburg, 1968). Among them, D. cingulatus is regarded as the most serious cotton pest in Southeast Asia (Miwa, 1944; Iwata, 1975, 1978a, b; Ahmad & Kahn, 1980; Ahmad & Schaefer, 1987; Farine, 1987; Yasuda, 1992). On Ishigaki-jima Island, where there is no commercial cotton cultivation, this species is usually observed on various malvaceous plants, especially Hibiscus makinoi (Kohno, unpublished). Dysdercus poecilus is, on the other hand, principally dependent on Sida rhombifolia, a wild malvaceous species, on Ishigaki-jima Island (Kohno, 2001). Dysdercus solenis and D. mesiostigma are very rare on Ishigaki-jima Island and there is no information on their host plants. Dysdercus decussatus is principally observed on Hibiscus tileaceus on Ishigaki-jima Island (Kohno, unpublished). With the exception of D. philippinus, which was collected on Okinawa Island, all species were collected on Ishigaki-jima Island.

Other heteropterous bugs used in the study

Other than Dysdercus, we used 12 species of heteropterous bugs belonging to six families for the prey preference experiment. These included Largidae (Physopelta cincticollis Stål, P. gutta (Burmeister); Figs. 8, 9), Lygaeidae (Oncopeltus nigriceps (Dallas), Graptostethus servus (Fabricius), Spilostethus hospes (Fabricius), Thunbergia sanguinaria (Stål); Figs. 10-13), Pyrrhocoridae (Armatillus sp.; Fig. 14), Alydidae (Riptortus clavatus (Thunberg), Daclera levana Distant; Figs. 15, 16), Coreidae (Dasynus coccocinctus (Burmeister); Fig. 17), and Rhopalidae (Leptocoris augur Fabricius, L. rufomarginata Fabricius; Figs. 18, 19). Except for three species with dull coloration (Armatillus sp., R. clavatus and D. levana), all other species selected have aposematic red and black coloration. With the exception of Thunbergia sanguinaria, which was collected on Iriomote-jima Island, all species were collected on Ishigaki-jima Island.

Field observation on habitat use

Field observation was executed in various vegetations including various malvaceous and bombacaceous plants at more than 20 sites on Ishigaki-jima Island for about 150 days intermittently from October 1998 to August 2001 to identify the habitat of *A. coqueberti*.

Preliminary experiment on entomophagy of A. coqueberti

We examined whether A. coqueberti can develop into adults feeding only on D. cingulatus. The rearing experiment was carried out under room temperature (ca. 25-30°C) and natural day length throughout the experimental period. About 80 eggs deposited in the laboratory on September 10, 1998 by a field-collected adult female of A. coqueberti were kept in a plastic container provided only with moistened filter paper until molting to the second instar on September 20. These second instar nymphs were kept together in a plastic container fed only with nymphs of D. cingulatus and water until the fifth instar and then fed with D. cingulatus adults and water. No plant materials were given at all throughout the nymphal development.

Entomophagy vs. phytophagy in A. coqueberti

Hibiscus plants (Figs. 20, 21), especially H. makinoi, are common habitat plants and a suitable food resource for D. cingulatus (Kohno, unpublished). Second instar nymphs of A. coqueberti were reared individually under 25° C and 14L-10D and provided with moistened filter paper. Each A. coqueberti nymph was provided one of three diets: five Hibiscus makinoi seeds (N=22), five *H. tiliaceus* seeds (N=22), or one full-grown second instar nymph of *D. cingulatus* (N=18). When the *D. cingulatus* nymph was consumed, an additional nymph was supplied. As a control, 30 second instar nymphs of *A. coqueberti* were reared with only water. Survival until the third instar and nymphal development were recorded every day.

Prey preference of A. coqueberti

The laboratory experiment was carried out with ten adult males of A. coqueberti reared in the laboratory with D. cingulatus as food. Two Dysdercus species (D. cingulatus and D. decussatus), recorded as natural prey of A. coqueberti in the field during this study, and two Physopelta species (P. cincticollis and P. gutta), which look like A. coqueberti and D. cingulatus, were used as potential preys. Each A. coqueberti individual was tested to see if it had consumed an individual from a randomly selected potential prey species within a 24 hour time frame. This test was repeated four times on each predator, once for each of the prey species.

To elucidate potential effects of visual resemblance and taxonomic relationships of preys on diet breadth of *A. coqueberti*, we observed the foraging behavior toward various bug species in the laboratory. The bugs used as potential preys were four *Dysdercus* species (*D. poecilus*, sp. probably *D. solenis*, sp. probably *D. mesiostigma*, *D. philippinus*) and ten species listed in the section "Other heteropterous bugs used in the study"—all except for the two largid species."

Results

Field observation on habitat use

Antilochus coqueberti was found only on and near Hibiscus or Chorisia shrubs or trees that were infested by Dysdercus bugs (Table 1), whereas Dysdercus species were often found alone. Antilochus coqueberti was most abundant during winter when Hibiscus makinoi fruited and a large number of D. cingulatus aggregated on and around it. Antilochus coqueberti was usually found on the ground and at lower parts of the host plants less than 1 m above the ground, while D. cingulatus inhabited various parts of the host plants and nearby vegetation or on the ground, forming aggregations at various parts of the plant including fruits formed at the tips of shoots. On Ishigaki-jima Island, D. cingulatus had a wide rage of host plants: Hibiscus makinoi, H. mutabilis, H. tiliaceus, H. syriacus, H. rosa-sinensis, H. cannabinus, Gossyppium arboreum, Malvastrum coromandelianum, Abelmoschus moschatus, A. esculentus, Chorisia speciosa and Bombax

394

Katsuyuki KOHNO, Keiichi TAKAHASHI and Mitsutaka SAKAKIBARA

ceiba. Dysdercus decussatus was usually associated with H. tiliaceus and in winter often formed aggregations on the undersides of its leaves, but was occasionally found on the fruits and leaves of H. makinoi, G. arboreum and Thespesia populnea. Dysdercus poecilus was usually found on various parts of Sida rhombifolia and rarely on H. syriacus.

Antilochus coqueberti adults killed adults and nymphs of D. cingulatus and D. decussatus, either on Hibiscus shrubs, on the ground or at lower parts of various nearby plants. Nymphs of A. coqueberti killed and fed principally on nmphs of D. cingulatus and D. decussatus in the similar manner as the adults. We observed no herbivory for A. coqueberti.

Preliminary experiment on entomophagy in A. coqueberti

Fourteen males and eight females of A. coqueberti emerged during October 22-30, 1998 fed only with D. cingulatus. This suggests that A. coqueberti is carnivorous to a considerable degree. Cannibalism sometimes occurred among younger instars.

Entomophagy vs. phytophagy in A. coqueberti

The second instar nymphs could develop to the third instar only when they were fed with *D. cingula-tus* nymphs (Table 2). No individuals fed with *Hibis-cus* seeds and water survived and developed to the next instar. The longevity of the individuals fed with

Table 1. Habitat plants and *Dysdercus* bugs associated with *Antilochus coqueberti* on Ishigaki-jima Island.

Plant species	Dysdercus bugs				
Malvaceae					
Hibiscus tiliaceus	D. cingulatus & D. decussatus				
H. makinoi	D. cingulatus				
	D. cingulatus & D. decussatus				
H. rasa-sinensis	D. cingulatus				
H. syriacus	D. cingulatus				
	D. cingulatus & D. poecilus				
Bombacaceae					
Chorisa speciosa	D. cingulatus				

Hibiscus seeds and water did not differ significantly from that fed with water alone.

Prey preference of A. coqueberti

Adult males of *A. coqueberti* immediately attacked within few minutes and consumed within 24 hours all the *Dysdercus* species, but neither attacked nor fed on any *Physopelta* bugs. Additional experiments revealed that *A. coqueberti* attacked and consumed almost all the pyrrhocorids and alydids, whereas no predation was observed on the lygaeid, coreid, and rhopalid species provided (Table 3).

Discussion

The results of our observations and experiments clearly exhibited that *A. coqueberti* is predacious, as pointed out by Iwata (1975, 1978a, b), and an obligatory predator. Previous reports on herbivory of *A. coqueberti* (Kawasawa & Kawamura, 1977; Singh & Tomar, 1977) could be erroneous or at best exceptional.

The experiments on prey preference for heteropterous bugs of various families revealed that *A. coqueberti* attacked and fed on pyrrhocorids and alydids immediately, regardless of the degree of their visual resemblance to the predator, but never attacked largids, lygaeids, coreids and rhopalids even if they looked similar in body coloration to the predator and its natural preys. Among these families, Pyrrhocoridae and Largidae are in the superfamily Pyrrhocoroidea (Schuh & Slater, 1995), but the prey preferences by *A. coqueberti* markedly differed between them. A similar phenomenon was observed for Alydidae, Coreidae and Rhopalidae, all of which are in the superfamily Coreoidea; only the Alydidae was preferentially attacked and consumed by *A. coqueberti*.

In the field, however, A. coqueberti preyed on only specific pyrrhocorids and no alydids. One reason may be the existence of some association between A. coqueberti and the malvaceous and bombacaceous plants listed in Table 1. If so, there must be very few

Table 2. Duration or longevity of the second instar nymphs of Antilochus coqueberti fed on the second instar nymphs of Dysdercus cingulatus or Hibiscus tiliaceus or H. makinoi seeds.

Feeding treatment	Diet	N	Molting	Died	Survival rate to 3rd instar	2nd instar duration Mean days±SE	Longevity Mean days±SE ^{a)}
Animal material	D. cingulatus nymph + Water	18	18	0	100%	5.6±0.1	
Plant material	H. tiliaceus seeds + Water	22	0	22	0%	—	6.2±0.2a
	H. makinoi seeds+Water	22	0	22	0%	—	5.1±0.2b
(Control)	Water	30	0	30	0%	_	5.8±0.3ab

^{a)} Values followed by the same letter were not significantly different (Tukey-Kramer test, P > 0.05).

Antilochus-Dysdercus Prey-predator Association

Table 3. Feeding experiment on prey preference of Antilocus coqueberti.

Prey species	Appearance (See Figs.)	N	A. coqueberti	Result	
Lygaeidae					
Oncopeltus nigriceps	Fig. 10	1	5th instar nymph	not consumed within 5 days	
Graptostethus servus	Fig. 11	6	Adult	not consumed within 7 days	
Spilostethus hospes	Fig. 12	1	5th instar nymph	not consumed within 24 h	
Thunbergia sanguinaria	Fig. 13	3	Adult	not consumed within 3 days	
Pyrrhocoridae					
Dysdercus poecilus	Fig. 3	6	4th instar nymph	all attacked within 15 min and consumed	
Dysdercus sp. ¹⁾	Fig. 4	2	Adult	all attacked within 1 min ³⁾	
Dysdercus sp. ²⁾	Fig. 5	3	Adult	2 of 3 attacked within 10 min and consumed	
D. philippinus	Fig. 7	11 `	Adult	all attacked within 25 h and consumed	
Armatillus sp.	Fig. 14	4	Adult	all attacked within 10 min and consumed	
Alydidae					
Riptortus clavatus	Fig. 15	2	Adult	all attacked within 5 h and consumed	
Daclera levana	Fig. 16	1	Adult	attacked within 18 h and consumed	
Coreidae					
Dasynus coccocinctus	Fig. 17	2	Adult	not consumed within 5 days	
Rhopalidae					
Leptocoris augur	Fig. 18	1	5th instar nymph	not consumed within 5 days	
L. rufimarginata	Fig. 19	1	Adult	not consumed within 5 days	
		1	5th instar nymph	not consumed within 5 days	
		1	4th instar nymph	not consumed within 5 days	

¹⁾ Probably Dysdercus solenis (Herrich-Schaeffer) according to Freeman (1947).

²⁾ Probably Dysdercus mesiostigma Distant according to Freeman (1947).

³⁾ Interrupted when A. coqueberti attacked the prey.

opportunities for A. coqueberti to encounter alydids or D. poecilus in the field, as alydids are primarily dependent on Leguminosae (Schaefer, 1980) and D. poecilus is exclusively dependent on the malvaceous plant, Sida rhombifolia (Kohno, 2001) and is rarely observed on another malvaceous plants. Four other pyrrhocorids are difficult to discuss because Dysdercus sp. probably D. solenis, Dysdercus sp. probably D. mesiostigma and Armatillus sp. are very rare and D. philippinus may be absent from Ishigaki-jima Island.

Another possible reason for the selectivity in the field may be the population density of each putative prey species. *Dysdercus cingulatus* was observed to reproduce in large numbers, especially during winter, on *H. makinoi*; predation on *D. cingulatus* by *A. coqueberti* was often observed there. Predation on *D. decussatus* by *A. coqueberti* was usually observed when *D. decussatus* occurred in the same habitat simultaneously with *D. cingulatus* (Table 1). In contrast, the alydids, *D. poecilus*, and other pyrrhocorids found on Ishigaki-jima Island were not observed in large numbers. If *A. coqueberti* is attracted to the prey in high density, there may be very few opportunities for *A. coqueberti* to prey on the bugs other than *D.*

cingulatus and D. decussatus.

Our findings suggest that the A. coqueberti-D. cingulatus system is similar to the Raxa nishidai-Melamphaus faber system (Nishida, 1999; Nishida et al., 2001). A notable difference is that A. coqueberti is oligophagous whereas R. nishidai is monophagous, specializing to M. faber. The difference in the diet breadth between the two predators may be based on that of the prey species. Both D. cingulatus and D. decussatus, especially the former, seasonally change host plant species (Kohno, unpublished) and they sometimes occur together in the same habitat simultaneously. In contrast, M. faber is virtually monophagous and stays within the same habitat throughout the year (Nishida, 1999; Nishida et al. 2001). In this respect, the A. coqueberti-D. cingulatus system could be more similar to the pyrrhocorid-reduviid system (Fuseini & Kumar, 1975; Schaefer & Ahmad, 1987) or the tingid-mirid system (Henry et al., 1986; Neal et al., 1991), in which the predators and prey exhibit considerable mobility and the predators are oligophagous.

It still remains to be explored whether these predator-prey associations are Müllerian mimicry

396

Katsuyuki KOHNO, Keiichi TAKAHASHI and Mitsutaka SAKAKIBARA

or aggressive mimicry. In both the A. coqueberti-Dysdercus and the R. nishidai-M. faber systems, the predators are more brightly aposematic than are the prey, and both seem to be distasteful (Kohno, unpublished; Nishida, personal communication). This suggests that in both systems the predators species are models and the prey species are mimics, forming a Müllerian mimic ring. However, no common predators have so far been observed. Before elucidating the mimicry types, a further study is necessary, particularly on the selection pressure that maintains the mimicry system.

Acknowledgments

Special thanks are due to Masashi Sugimoto and Masaaki Kimura (Naha City) for providing us a live specimen of A. coqueberti, and to Tadafumi Nakata (Okinawa Subtropical Station, JIRCAS) for providing us live bugs used as putative prey for A. coqueberti. Eiich Hara (Fujioka City) kindly informed us on the breeding site of A. coqueberti. Takayoshi Nishida (Kyoto University) kindly introduced us the literature on A. coqueberti and on the Melamphaus faber-Raxa nishidai prey-predator system. Syôiti Miyamoto (Fukuoka City), Masami Hayashi (Saitama University), Mikio Takai (Kochi Prefectural Agricultural Research Center) and Masaaki Tomokuni (National Science Museum) kindly identified bug species. We also thank anonymous referees for the proposal to emphasize a phenomenon of mimicry.

References

- Ahmad, I. & Kahn, N. H. 1980. Effects of starvation on the longevity and fecundity of red cotton bug, *Dysdercus cingulatus* (Hemiptera: Pyrrhocoridae) in successive selected generations. *Applied Entomology and Zoology*, 15: 182-183.
- Ahmad, I. & Schaefer, C. W. 1987. Food plant and feeding biology of the Pyrrhocoroidea (Hemiptera). *Phytophaga*, 1: 75-92.
- Chauthani, A. R. & Misra, U. S. 1966. Observation on the life history of Antilochus coqueberti, a predator of Dysdercus koenigi. Journal of Economic Entomology, 59: 767-768.
- Corbett, G. H. 1923. Annual report of the government entomologist, for 1923. *Malayan Agricultural Journal*, 12: 252-259.
- Dhiman, S. C. 1985. Review of the Antilochus coqueberti Fabr. (Heteroptera-Pyrrhocoridae). Geobios new Reports, 4: 63-65.
- Edmunds, M. 1974. Defence in Animals. Longman Group Limited, London.
- Farine, J.-P. 1987. The exocrine glands of *Dysdercus cingulatus* (Heteroptera, Pyrrhocoridae): morphology and function

of nymphal glands. Journal of Morphology, 194: 195-207.

- Freeman, P. 1947. A revision of the genus Dysdercus Boisduval (Hemiptera, Pyrrhocoridae), excluding the American species. Transactions of the Royal Entomological Society of London, 98: 373-424.
- Fuseini, B. A. & Kumar, R. 1975. Ecology of cotton stainers (Heteroptera: Pyrrhocoridae) in southern Ghana. Biological Journal of Linnean Society, 7: 113-146.
- Henry, T. J., Neal, J. W., Jr. & Gott, K. M. 1986. Stethoconus japonicus (Heteroptera: Miridae): A predator of Stephanisis lace bugs newly discovered in the United States, promising in the biocontrol of azalea lace bug (Heteroptera: Tingidae). Proceedings of the Entomological Society of Washington, 88: 722-730.
- Iwata, K. 1975. Shizen Kansatsusha no Shuki [Memoirs by observer on nature]. Asahi Shimbun Co., Tokyo. (In Japanese.)
- Iwata, K. 1978a. Konchu wo Mitsumete 50 nen [Fifty-yearobservation on insects]. Volume 1. Asahi Shimbun Co., Tokyo. (In Japanese.)
- Iwata, K. 1978b. Konchu wo Mitsumete 50 nen [Fifty-yearobservation on insects]. Volume 2. Asahi Shimbun Co., Tokyo. (In Japanese.)
- Kawasawa, T. & Kawamura, M. 1977. Kame-mushi Hyaku-shu [Hundred species of bugs] (revised edition). Zenkoku Noson Kyoiku Kyokai Pub. Co., Tokyo. (In Japanese.)
- Kohno, K. 2001. Host plant of Dysdercus poecilus (Heteroptera: Pyrrhocoridae) and its relative species in Ishigaki-jima Island, the Ryukyus, Japan. Rostria, 50: 31-34. (In Japanese with English summary.)
- Miwa, Y. 1944. Netchi Watasaku Gaichuu Boujo Hanron [General notes on the control of insect pests on cotton plant in the tropics]. Taiwan Nougyou Kai, Taipei. (In Japanese.)
- Miyamoto, S. & Yasunaga, T. 1989. Hemiptera (b) Heteroptera. In Hirashima, Y. (ed.), A Check List of Japanese Insects, I: 151-188. Entomological Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka and Japan Wildlife Research Center, Tokyo,. (In Japanese.)
- Neal, W. J., Jr., Haldemann, R. H. & Henry, T. J. 1991. Biological control potential of a Japanese plant bug Stethoconus japonicus (Heteroptera: Miridae), an adventive predator of the azalea lace bug (Heteroptera: Tingidae). Annals of the Entomological Society of America, 84: 287-293.
- Nishida, T. 1999. Curious interactions between phytophagous and predacious bugs in Bogor Botanic Gardens, Indonesia. *Insect and Nature [Konchû to Shizen]*, 34 (12): 19-23. (In Japanese.)
- Nishida, T., Nakamura, K. & Noerdjito, W. A. 2001. Population dynamics of an isolated population of the tropical pyrrhocorid bug, *Melamphaus faber*, feeding on seeds of *Hydnocarpus* trees and the specialist predator, *Raxa* nishidai in Bogor, West Java, Indonesia. Tropics, 10: 449-461.
- Quayum, M. A. & Nahar, G. 1980. External morphology of the pyrrhocorid bug, Antilochus coqueberti (Fabr.), a predator of Dysdercus koenigii (Fabr.). Bangladesh Journal of Zoology, 8: 119-126.
- Schaefer, C. W. 1980. The host plant of the Alydinae, with a note on heterotypic feeding aggregations (Hemiptera: Cor-

eoidea: Alydidae). Journal of the Kansas Entomological Society, 53: 115-122.

- Schaefer, C. W. 1997. The origin of secondary carnivory from herbivory in Heteroptera (Hemiptera). In Raman, A. (ed.), Ecology and Evolution of Plant-Feeding Insects in Natural and Man-Made Environments: 229-239. International Scientific Publications, New Delhi.
- Schaefer, C. W. 1999. Review of Raxa (Hemiptera: Pyrrhocoridae). Annals of the Entomological Society of America, 92: 14-19.
- Schaefer, C. W. & Ahmad, I. 1987. Parasites and predators of Pyrrhocoroidea (Hemiptera), and possible control of cotton stainers by *Phonoctonus* spp. (Hemiptera: Reduviidae). *Entomophaga*, 32: 269-275.
- Schuh, R. T. & Slater, J. A. 1995. True Bugs of the World (Hemiptera: Heteroptera); Classification and Natural History. Cornell University Press, Ithaca.

Singh, D. R. & Tomar, S. S. 1977. Comparative toxicity list of

nine insecticides for laboratory control of Antilochus conqueberti Fabr. (Hem., Pyrrhocoridae). Deutsche Entomologische Zeitschrift, 24: 181-185.

- Van Doesburg, P. H. Jr. 1968. A Revision of the New World species of *Dysdercus* Guérin Méneville (Heteroptera, Pyrrhocoridae). Zoologische Verhandelingen, 97: 1-215.
- Wickler, W. 1968. Mimicry in Plants and Animals. McGraw-Hill, New York.
- Yasuda, K. 1992. Cotton bug. In Hidaka, T. et al. (eds.), Insect Pests on Vegetables in Tropics: 22-23. Association for International Cooperation of Agriculture & Forestry, Tokyo. (In Japanese.)
- Yasunaga, T., Takai, M., Yamashita, I., Kawamura, M. & Kawasawa, T. 1993. A Filed Guide to Japanese Bugs, Terrestrial Heteropterans (Tomokuni, M. ed.). Zenkoku Noson Kyoiku Kyokai, Tokyo. (In Japanese.)

(Received November 14, 2001; Accepted July 8, 2002)