321

TIG 溶接したねずみ鋳鉄の強度特性

日本大学[院] 〇野秋慎 日本大学 柴田文男 日本大学 今井邦夫 関東学院大学 武田克彦 Strength Properties of TIG Welded Gray Cast Iron Shin NOAKI,Fumio SHIBATA, Kunio IMAI and Katsuhiko TAKEDA

1 緒

言

近年,鋳鉄系材料の中でもねずみ鋳鉄の生産量は著し く多く,各種産業機械の主力材料として使用されている. 一方,ねずみ鋳鉄の溶融溶接に関しては,古くから報 告があるが,いずれもねずみ鋳鉄の補修溶接や溶接欠陥 の防止などを対象としており,溶接継手の強度が要求さ れる組立て溶接に関して積極的に行われていないのが 現状である.それは,ねずみ鋳鉄に炭素が多量に含まれ ており,溶接に伴う溶融・凝固過程において溶接部は急 冷され,白銑化やマルテンサイト化による硬化と割れが 発生しやすく,また溶接中に発生する多量のガスがブロ ーホールの生成因子となり,機械的強度の低下が著しく 起こりやすいことなどが,鋳鉄の溶接を困難にしている 主たる原因である^{1),2}.

そこで本報告では、ねずみ鋳鉄を V 形に突合せて TIG 溶接を行い、溶接部の組織観察、硬さ測定及び引張特性 などについて二、三検討した.

2 供試材料及び実験方法

Table1 に母材及び溶加材の化学成分と機械的性質を示 す. 母材には FC300 相当のねずみ鋳鉄を使用した. 溶加 材には DFCNiFe を使用した. Fig.1 に母材及び溶加材の ミクロ組織と硬さを示す. 溶接前処理として,母材及び 溶加材をアセトン中で洗浄した.

Fig.2 に TIG 溶接装置の概略図を示す. 溶接トーチは, トーチ走行装置に固定し,トーチ走行装置がレール上を 走行することにより,溶接方向,アーク長及び溶接速度 が一定となるように制御した. TIG 溶接は,Ar ガスをノ ズルから供給してシールドするため溶接金属の汚染が 軽減される溶接法である.なお,Table2 に TIG 溶接条件 を示す.溶接条件は基礎実験の結果より,溶接入熱は 20400J/cm とした.

Fig.3 に継手形状を示す.母材の寸法は,t6×100× 100mmとした.また,溶加材の寸法は¢4×350mmであ る.母材の突合せ面は,60°V形開先とした.溶接に際 し,治具で軽く固定し,片面2層V形溶接を行った.溶 接終了後,溶接ビードの外観検査を行い,試験片は溶接 線に対して直角に採取し,機械加工を行った.溶接部の組 織は,ビード横断面を切断・研磨後,熱影響部及び母材 部を5%ナイタル,溶接金属を10%クロム酸水溶液にて 電解腐食を行い,光学顕微鏡で観察した.母材及び溶接 継手の材料試験として,マイクロビッカース硬さ試験(硬 さ記号:HV0.3)及び引張試験(JIS5号)を行い,母材及び 溶接継手の冶金的及び機械的性質などについて調べた.

 Table 1
 Chemical compositions and mechanical properties of base metal and filler metal.

Materials		Chemical composition (mass%)							Mechanical properties	
		C	Si	Mn	Р	s	Ni	C.E.	T.S. (MPa)	El. (%)
Base metal	FC300	2.82	1.72	1.42	0.041	0.052	-	3.41	309	0.9
Filler	DFCNiFe	0.99	0.28	1.90	0.007	0.002	54.3	-	520	11

Notes:1)T.S.:Tensile strength 2)El.:Elongation 3)C.E.:Carbon equivalent

FC300(Base metal)

DFCNiFe(Filler metal)

Fig.1 Microstructure and Vickers hardness of base metal and filler metal.

Fig.2 Schematic diagram of TIG welding system.

Table 2 Welding conditions.

Polarity	DCSP
Electrode	YWTh-2, <i>\phi</i> 2.4mm
Arc length	4mm,4mm
Filler metal	DFCNiFe
Number of layer	2layers
Welding current	170A
Welding voltage	20V
Welding speed	100mm/min
Welding heat input	20400J/cm
Welding position	Top:2layers
Flow rate of shielding gas	Ar gas:100/min

Fig.3 Joint configuration.

3 実験結果

3.1 溶接部の外観,組織及び硬さ分布

Fig.4 に溶接継手のビード外観とビード横断面を示す. 溶接ビードにスパッタの発生は認められなかった.表面 ビード幅の平均は 8.23mm, 裏波ビード幅の平均は 6.58mm であった. Fig.5 に溶接部のミクロ組織を示す. 溶接金属の組織はデンドライトの様相を呈していた.ま た,熱影響部では急熱・急冷により針状マルテンサイト が認められた. Fig.6 に溶接部の硬さ分布を示す.溶接金 属の平均硬さは,上部 298HV,中央部 312HV 及び下部 282HV であった.一方,熱影響部最高硬さは,上部 746HV, 中央部 777HV 及び 下部 680HV であり,母材(190HV)に 比して硬さが著しく上昇した.

3.2 溶接継手の引張特性

Fig.7 に母材及び溶接継手の引張強さと継手効率を示 す.溶接継手の引張強さは、247~275MPa(3本)を示し、 その平均は 260MPa であった.母材の平均引張強さ (309MPa)に対する平均継手効率は、84%であった.試験 片の破断位置は、3本中1本が母材部で破断し、2本が 熱影響部から破断した.熱影響部から破断した破面は白 色を呈し、凹凸の少ない破面を呈していた.

4 結 言

TIG 溶接した FC300 ねずみ鋳鉄溶接部の継手強度など について二,三検討し,次の結果を得た.

- (1) 溶接ビードには、割れやスパッタが認められなかった.
- (2) 溶接金属の硬さは、溶接ビード横断面の上、中、下の平均で 297HV であった.また、熱影響部最高硬さは平均で 734HV であった.
- (3) 溶接継手の引張強さは、平均で260MPaを示し、その平均継手効率は84%であった.

謝 辞

本研究の遂行に当たり,熱心に実験に協力頂いた日本 大学理工学部精密機械工学科の卒研生の高濵智久君に 深く感謝いたします.

参考文献

- 関口信一,鈴木慎也,柴田文男,日本機械学会関東 支部山梨地方講演会講演論文集,90,30 (2009).
- 2) 鈴木慎也, 関口信一, 柴田文男, 日本鋳造工学会第 158 回 全国講演大会講演概要集, 92 (2011).

Fig.4 Bead appearance and cross section of welded joint.

Fig.5 Microstructure of welds.

Fig.6 Vickers hardness distribution of welds.

base metal and welded joints.