
RIKEN Review No. 29 (June, 2000): Focused on Large-scale Calculation of Electronic States

Large scale DFT calculations with SIESTA
Pablo Ordejón,∗1 Daniel Sanchez-Portal,∗2 Alberto Garcia,∗3 Emilio Artacho,∗4 Javier Junquera,∗4 and Jose M. Soler∗4
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In the context of linear scaling methods for electronic structure and molecular dynamics calculations, SIESTA was
developed as a fully first-principles method able to deal with systems with an unprecedented number of atoms, with a
modest computational workload. The method has allowed us to study a large variety of problems involving nanoscale
materials, such as nanoclusters, nanotubes, biological molecules, adsorbates in surfaces, etc . Here we present a brief
review of such applications.

Introduction

The contribution of first-principles calculations to several
fields in physics, chemistry, materials sciences, and recently
geology and biology is more important than ever. The main
reasons are, on one hand, the steady increase in computer
power, and on the other, the continuous progress in method-
ology (both in efficiency and in accuracy of algorithms and
approximations). As larger and more complex systems are
falling within the range of applicability of these methods,
some barriers (formerly believed to be fundamental) are be-
ing reached. One of these is the scaling of the computational
effort with system size. In the most favorable cases like with
Density Functional Theory (DFT),1,2) quantum mechanical
formulations of the electronic structure of atomic systems
scale as the cube of the number of atoms (or electrons) of
the system. 3) This makes it very difficult to reach system
sizes larger than a few hundreds of atoms, and is therefore
a huge barrier for the study of problems in nanoscale mate-
rials. The way out of this trap was found several years ago,
when a number of ideas suggested the possibility of devel-
oping approximate although accurate schemes to reduce the
computational cost to linear scaling. These so called O(N)
methods 4) have matured since those first proposals, and now
constitute a viable route for studying systems with unprece-
dented size.

The key for achieving linear scaling is the explicit use of local-
ity, meaning by it the insensitivity of the properties of a re-
gion of the system to perturbations sufficiently far away from
it.5) A local language will thus be needed for the two different
problems one has to deal with in a DFT-like method: building
the self-consistent Hamiltonian, and solving it. Most of the
initial effort was dedicated to the latter 4,6) using empirical
or semi-empirical Hamiltonians. The SIESTA project 7–10)

started in 1995 to address the former. Atomic-orbital ba-
sis sets were chosen as the local language, allowing for arbi-
trary basis sizes, what resulted in a general-purpose, flexible
linear-scaling DFT program.9–11) A parallel effort has been
the search for orbital bases that would meet the standards
of precision of conventional first-principles calculations, but
keeping as small a range as possible for maximum efficiency.10)

In this paper, we give a brief overview of several applications

of SIESTA to problems in different nanoscale systems. We
first summarize the main features and approximations used
in SIESTA, and then give a very brief description of several
applications in carbon nanostructures (fullerenes and nano-
tubes), metallic nanostructures (transition and noble metals,
and nanowires), biomolecules, and surfaces and disordered
systems.

The SIESTA method

SIESTA is based on DFT, and can use both local-density
(LDA)3) and generalized-gradients (GGA) functionals,12) in-
cluding spin polarization, collinear and non-collinear.13) The
core electrons are replaced by norm-conserving pseudopo-
tentials 14) factorized in the Kleinman-Bylander form,15) in-
cluding scalar-relativistic effects, and non-linear partial-core
corrections.16) The one-particle problem is then solved us-
ing linear combination of atomic orbitals (LCAO). There are
no constraints either on the radial shape of these orbitals
(which are treated numerically), or on the size of the basis,
allowing for the full quantum-chemistry (QC) know-how 17)

(multiple-ζ, polarization, off-site, contracted, and diffuse or-
bitals). Forces on the atoms and the stress tensor are ob-
tained from the Hellmann-Feynman theorem (including Pu-
lay corrections), and can be used for structure relaxations or
molecular dynamics simulations of different types.

The DFT equations are solved using the self-consistent
field (SCF) method. For a Hamiltonian, the one-particle
Schrödinger equation is solved yielding the energy and den-
sity matrix for the ground state. This is performed either by
diagonalization (cube-scaling, appropriate for systems under
a hundred atoms or for metals) or with a linear-scaling al-
gorithm. These have been extensively reviewed elsewhere.4)

SIESTA implements two O(N) algorithms 6,18) based on lo-
calized Wannier-like wavefunctions.

Once the density matrix has been obtained, the SCF pro-
cedure continues with the calculation of a new Hamiltonian
matrix. The matrix elements of the different terms of the
Kohn-Sham Hamiltonian are calculated in one of two differ-
ent ways.9) The terms that involve integrals over two atoms
only (kinetic energy, overlap, and other terms related with

42



the pseudopotential) are computed a priori as a function of
the distance between the centers, and stored in tables to be
interpolated later with very little use of time and memory.
The other terms are calculated with the help of a uniform
grid of points in real space. The smoothness of the inte-
grands determines how fine a grid is needed, and, of course,
the finer the grid, the more expensive the calculation. We re-
mark that the use of pseudopotentials, which eliminates the
rapidly varying core charge, is essential to provide functions
smooth enough to make the grid integration feasible. This
fineness is measured by the energy of the shortest wave-length
plane-wave that can be described with the grid, in analogy
with plane-wave calculations.

The calculation of the Hamiltonian matrix elements sketched
above has an O(N) scaling provided that the range of overlap
between the basis orbitals is finite. To achieve that, we use
basis orbitals which strictly vanish beyond a cutoff radius 10)

(instead of the usual approach of using decaying orbitals and
neglecting matrix elements by whatever criterion). The main
advantage is consistency: given a basis, the eigenvalue prob-
lem is solved for the full Hamiltonian. Thus, the procedure
is numerically very stable even for short ranges, in contrast
with the usual approach. In this and previous works, the ra-
dial parts of the finite-range orbitals were determined in the
spirit of the method Sankey and Niklewski,19) who proposed
a scheme for minimal (single-ζ) bases that we have gener-
alized to arbitrarily complete sets.10) The single-ζ orbitals
are obtained by solving the DFT atomic problem (includ-
ing the pseudopotential) with the boundary condition for the
orbitals of being zero beyond the cutoff radius, while remain-
ing continuous.20) For the efficient generation of larger, more
complete basis sets we have used the ideas developed within
the QC community over the years, incorporating them into
new schemes adapted to numerical, finite-range bases for lin-
ear scaling. Numerical multiple-ζ bases are constructed in
the split-valence philosophy. 9,10) Our approach also allows
polarization orbitals 10) which are obtained by numerically
solving the problem of the isolated atom in the presence of a
polarizing electric field.

Applications

Carbon nanostructures: Fullerenes and nanotubes. A pre-
liminary version of SIESTA was first applied to study the
shape of large hollow carbon fullerenes7) up to C540, the re-
sults contributing to establish that they do not tend to a
spherical-shape limit but tend to facet around the twelve cor-
ners given by the pentagons. SIESTA has been also applied
to carbon nanotubes. In a first study, structural, elastic and
vibrational properties were characterized.21) A second work
was dedicated to their deposition on gold surfaces, and the
STM images that they originate,22) specially addressing ex-
periments on finite-length tubes. A third study has been ded-
icated to the opening of single-wall nanotubes with oxygen,
and the stability of the open, oxidized tubes for intercalation
studies.23)

Metallic nanostructures: Clusters and wires. Gold nanoclus-
ters of small sizes (up to Au75) were found

24) to be amor-
phous, or nearly so, even for sizes for which very favorable
geometric structures had been proposed before. In a fur-

ther study the origin of this striking situation is explained
in terms of local stresses.25) Chains of gold atoms have been
studied addressing the experiments 26) which show them dis-
playing remarkably long interatomic spacings (4–5 Å). A first
study 27) arrives at the conclusion that a linear gold chain
would break at interatomic spacings much smaller than the
observed ones. A possible explanation of the discrepancy is
reported elsewhere,28) in terms of a spinning zigzag structure
for the monoatomic wires. The magnetic properties of low di-
mensional Fe systems were also studied.29) Both free clusters
and supported on Ag(001) surfaces were considered. The ef-
fect of coordination and substrate were studied. Finally, the
structure and energetics of binary Ni-Al clusters was studi-
ed, addressing the segregation of species towards the cluster
surface.30)

Biomolecules. Feasibility tests on DNA were performed in
the early stages of the project, by relaxing a dry B-form
poly(dC)-poly(dG) structure with a minimal basis. 8,9) In
preparation of realistic calculations, a thorough study 31) of
30 nucleic acid pairs has been performed addressing the pre-
cision of the approximations and the DZP bases, and the
accuracy of the GGA functional,12) obtaining good results
even for the hydrogen bridges. Based on that, a first study of
dry A-DNA has been performed, with a full relaxation of the
structure, and an analysis of the electronic characteristics.32)

Surfaces and disordered systems. A molecular dynamics sim-
ulation was performed33) on the clean surface of liquid silicon
close to the melting temperature, in which surface layering
was found, i.e ., density oscillations of roughly atomic ampli-
tude, like what was recently found to happen in the surface
of other liquid metals.34) Unlike them, though, the origin for
silicon was found to be orientational, reminescent of directed
octahedral bonding. Adsorption studies have also been per-
formed on solid silicon surfaces, Ba on Si(100)35) and C60

on Si(111).36) Both works study adsorption geometries and
energetics. For Ba, interactions among adsorbed atoms and
diffusion features are studied. For C60, STM images have
been simulated and compared to experiments. Metastable
phases of FeSi on Si(111) were studied,37) to explain recent
photoemission data. Finally, the structure and electronic lo-
calization of defects in amorphous Si and C were analized,38)

supporting the view of the dangling bond as the source of
ESR signal in a-Si.
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