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Wave-packet dynamics by optimized polynomials
methods
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An optimized and numerically stable method, based on the formalism of orthogonal polynomials, is proposed to solve
the time-dependent Schrödinger equation and to construct energy-filtered wave-packets. It is compared to other
methods (Runge-Kutta, Second-Order Differencing scheme). A method is also devised to study quantum diffusion
in finite systems with periodic boundary conditions, which allows to suppress boundary effects. As an illustration of
our methods, electronic localization is studied in a random magnetic flux lattice.

Introduction

Computing the time-evolution of wave-functions gives many
valuable information about electronic properties, such as lo-
calization lengths, wave-packet dynamics or transport coeffi-
cients.1–3) In order to perform these studies it is generally nec-
essary to produce first a state with a sufficiently well-defined
energy and to determine its evolution by solving the time-
dependent Schrödinger equation. In this paper, we prove that
these operations can be performed by general algorithms de-
rived from the theory of orthogonal polynomials.4,5) These
algorithms lead to optimum accuracy and are numerically
stable in any situation (smooth or more irregular and fractal
spectra). A comparison with other propagation schemes is
given. Besides, a simple way to study diffusion properties
in a system with periodic boundary conditions is presented,
allowing to suppress the effect of boundaries. An application
to a system of great current interest is given.

Polynomial methods

Hereafter, we consider quantum systems described by time-
independent tight-binding hamiltonians Ĥ with finite band-
width W . There exists several methods to compute the evo-
lution of a state in such systems. A first possibility is ex-
act diagonalization, but it is not applicable to large systems,
except very particular cases. The Trotter methods 1) treat
a broader class of systems, whose hamiltonians can be split
into two parts Ĥ1 and Ĥ2 such that it is numerically workable
to change from the diagonalization basis of Ĥ1 to the diago-
nalization basis of Ĥ2. Some other methods are valid for any
type of hamiltonian. The Runge-Kutta and the Second-Order
Differencing (SOD) schemes, as well as their improvements,6)

discretize time into steps ∆t much smaller than ~/W . The
evolution operator Û(∆t) = exp(−iĤ∆t/~) is expanded in
the first powers of Ĥ, and iterated many times. Some other
methods allow direct propagation on a larger time t by using
a high-order expansion of Û(t) : the Lanczos scheme is com-
monly used up to the tenth order,7,8) while the Chebyshev
scheme is used at still larger order (several tens).

Apart from diagonalization and Trotter methods, an impor-
tant common feature of these methods is that they can be

viewed as approximations of Û(t) with a complex polynomial
of degree N :

Û(t) � RN (Ĥ, t)

obtained after several Runge-Kutta or SOD steps, or after a
single step with high-order methods. More generally, many
operators of the form f(Ĥ) may be approximated with an
appropriate polynomial of degree N :

f(Ĥ) � RN (Ĥ)

In this paper, we will focus essentially on two cases. For the
evolution operator, f(Ĥ) = exp(−iĤt/~). For a gaussian
energy-filtering operator, f(Ĥ) = exp[−(Ĥ − E0)

2/∆2] and
one can check, by spectral decomposition, that f(Ĥ) enlarges
the relative weight of energy components close to E0.

Optimized polynomials

The main question considered here is which polynomial RN
gives the best accuracy at a given numerical cost. Let us con-
sider first the numerical cost. In order to compute RN (Ĥ)|ψ〉,
there are 3 types of operations: additions of vectors, multi-
plications by scalars and applications of Ĥ . Detailed anal-
ysis shows that the most time-consuming part is the appli-
cation of Ĥ, particularly when each orbital is coupled to a
great number of other orbitals. Thus the total numerical
cost essentially depends on the number of iterations of Ĥ ,
equal to the degree N of RN , and is nearly independent of
the coefficients of RN . Now the question is to give a defi-
nition for accuracy in order to compare two polynomials of
same degree. We define the error as the norm of the vector
|δψN 〉 = RN (Ĥ)|ψ〉−f(Ĥ)|ψ〉. Errors due to finite computer
precision are not taken into account at this stage. By spectral
decomposition, 〈δψN |δψN 〉 =

R
dEnψ(E)

��RN(E) − f(E)
��2,

where nψ(E) = 〈ψ|δ(E − Ĥ)|ψ〉 is the local density of states
(LDoS), independent of time. The best polynomial RN
should be obtained by minimizing 〈δψN |δψN 〉 but, as shown
below, it is useful to consider more generally the minimiza-
tion of

∆n(RN , f) =

Z
dEn(E)

��RN (E)− f(E)
��2 (1)
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where n(E) is non-zero on the whole spectrum of Ĥ , and may
be chosen close to nψ(E), in the sense that their respective
moments are close to each other.

The minimization of ∆n(RN , f) is done within the formalism
of orthogonal polynomials.9) We consider a positive weight-
function n(E) which is non-zero only on a finite interval
and such that

R
dEn(E) = 1. If one defines a hermitian

product in the space of complex functions of E as 〈f |g〉 =R
dEn(E)f∗(E)g(E), the integral ∆n(RN , f) is the squared

distance between f and RN . There exists a system of real
orthonormal polynomials {Pn}n≥0 such that degree[Pn] = n.
These polynomials satisfy a three-term recurrence relation
EPn(E) = anPn(E) + bn−1Pn−1(E)+ bnPn+1(E), where the
an, bn are real coefficients, and P−1 = 0. The system of poly-
nomials is unique, provided that a sign convention is chosen
for the bn (usually bn > 0).

The polynomial of degree N (or less) which minimizes the
integral ∆n(RN , f) is easily found for any function f such
that 〈f |f〉 is finite. It is the orthogonal projection of f on
the subspace of polynomials with degree ≤ N :

R
(0)
N (E) =

NX
n=0

〈Pn|f〉Pn(E) (2)

and, from general theory of developments in orthogonal poly-
nomials, ∆n(R

(0)
N , f) → 0 when N → +∞, therefore R

(0)
N

converges to f with respect to the distance
√
∆n.

This leads, at least formally, to a polynomial development of
f(Ĥ)|ψ〉 :

R
(0)
N (Ĥ) =

NX
n=0

〈Pn|f〉Pn(Ĥ)

f(Ĥ)|ψ〉 = lim
N→+∞

NX
n=0

〈Pn|f〉Pn(Ĥ)|ψ〉 (3)

First, let us study the convergence of this series towards
f(Ĥ)|ψ〉, in the sense that 〈δψN |δψN 〉 must tend to zero,

where |δψN 〉 = R
(0)
N (Ĥ)|ψ〉 − f(Ĥ)|ψ〉. It will be proven

elsewhere 10) that, for the evolution and gaussian energy-
filtering operators, convergence is obtained with any regu-
lar n(E) which is non-zero where nψ(E) is non-zero. The
proof is simple if there exists a constant λ such that nψ(E) <
λn(E) for all E, which is the case for many systems. Then

∆nψ (R
(0)
N , f) < λ∆n(R

(0)
N , f) → 0, and since ∆nψ (R

(0)
N , f) =

〈δψN |δψN 〉, Eq. (3) is demonstrated. Second, let us consider
the coefficients 〈Pn|f〉 =

R
dEn(E)Pn(E)f(E) which can be

calculated either from their integral form, or by a more con-
venient method described elsewhere. 10) In the case of the
evolution operator (f(E) = exp(−iEt/~)), one can prove the
majoration |〈Pn|f〉| ≤ αn/(1− α/n)n!, where n > α = Bt/~
and B is the half-width of the energy interval where n(E)
is non-zero. Finally, from the recurrence relations between
orthogonal polynomials, the norm of the vectors Pn(Ĥ)|ψ〉 is
bounded by An, where A is a constant. Thus, in the case of
the evolution operator, the nth term of the series (3) has a
norm bounded by (Aα)n/(1−α/n)n!, and the series converges
absolutely and quickly : this allows a good summation where
neglected terms are very small. Fast convergence is also ob-
tained in the case of the gaussian energy-filtering function
f(E) = exp[−(E − E0)

2/∆2].

Focusing on the evolution operator, several choices for n(E),
corresponding to different polynomial expansions (3), are
now discussed. The most popular polynomial expansion is
based on Chebyshev polynomials of the first kind, associated
to a weight-function n(E) = 1/(2πb

p
1− (E − a)2/4b2) de-

fined on an interval [a− 2b, a+ 2b] which contains the whole
spectrum of Ĥ. It is numerically stable and efficient for
computing evolution of states with broad LDoS in systems
with single-band regular DoS. But it is well-known that this
method is not efficient for states with peaked LDoS such as
energy-filtered states.1)

From the integral expression of the error, 〈δψN |δψN 〉 =
∆nψ (RN , f), best accuracy is obtained with a development
on the orthogonal polynomials associated to the LDoS nψ(E).
This choice is equivalent to the Lanczos method: the states
Pn(Ĥ)|ψ〉 form an orthonormal basis which can be obtained
by Lanczos tridiagonalization of Ĥ, while the recurrence co-
efficients an, bn are just the corresponding matrix elements.
But despite its optimal character for any LDoS, the Lanc-
zos method is subject to numerical instabilities, due to fi-
nite computer precision. We have tested it at large order N
on various tight-binding hamiltonians. The long-time evolu-
tion was computed by iterating the algorithm with the same
polynomial: |ψ(kt)〉 � [R

(0)
N (Ĥ, t)]k|ψ(0)〉. An instability was

shown to occur after several time-steps t, because of band-
edge components of |ψ(0)〉 growing exponentially and thus
leading to non-conservation of unitarity. Reasons were iden-
tified as roundoff errors combined with a bad interpolation
of exp(−iEt/~) by R(0)

N (E, t) close to the band-edges.

The method proposed here combines the advantages of
Chebyshev and Lanczos schemes. It is close to the Lanczos
scheme, hence nearly optimized, but it is numerically stable
in any situation. A new weight-function n(E) is derived from
nψ(E) by convolution with a narrow semi-elliptic function
centered around E = 0. As n(E) is close to nψ(E), the error
〈δψN |δψN 〉 is nearly minimal, but each energy band is slightly
enlarged, yielding to a good polynomial interpolation at the
band-edges. The corresponding recurrence coefficients an, bn
are directly calculated from the initial aψn , b

ψ
n as described

elsewhere.10,11) It has been tested at large order N � 50 on
many tight-binding systems with regular, singular or fractal
spectra : 2D and 3D disordered or quasiperiodic lattices and
random magnetic flux lattices. The method is stable, and
numerical efficiency is as good as the ideal Lanczos method.
To test accuracy, conservation of the LDoS has been checked.
Moreover, no significant difference was observed when using
double machine precision or when increasing the number of
terms in Eq. (3).

For sake of clarity, let us recapitulate the numerical algo-
rithms used for propagation and energy-filtering. Both are
based on the development (3) of an operator f(Ĥ). First
a weight-function n(E) and its associated orthogonal poly-
nomials Pn are derived by convolution of the LDoS. For prop-
agation during a time t, f(E) = exp(−iEt/~), and the coef-
ficients 〈Pn|f〉 are computed. Using the recurrence relation
between polynomials, each vector Pn(Ĥ)|ψ〉 is evaluated re-
cursively from the two previous vectors, and summed in the
series (3). For large systems, most of the computer memory
used by the algorithm is occupied by these three quantum
states, and the N iterations of Ĥ done during the recurrence

74



are the most time-consuming steps. Since |ψ(t)〉 has the same
LDoS than |ψ(0)〉, propagation at next time 2t is obtained
by doing exactly the same recursive summation based on the
same weight-function n(E), but starting from the initial state
|ψ(t)〉, and so on. Gaussian energy-filtering is based on the
same principles. We start from an extended random-phase
state, whose LDoS is close to the total DoS. An energy E0

and a width ∆ are chosen, and the coefficients 〈Pn|f〉 asso-
ciated to f(E) = exp[−(E − E0)

2/∆2] are computed. Then
the partial series (3) is summed recursively with a sufficient
number N of terms, as for the propagation algorithm, and a
filtered-state is obtained.

Comparison with other propagation methods

The optimized propagation algorithm is used with a poly-
nomial of degree N = 50, and compared to the second-order
Runge-Kutta and SOD methods. The system considered here
is a semi-infinite chain with nearest-neighbour hopping and
we study the evolution of a state initially localized on the
first site. In fact, by tridiagonalization of the hamiltonian,
any propagation problem in 2D or 3D can be reduced to such
a propagation on a semi-infinite chain. Thus the test per-
formed here in 1D gives also a good estimate of the accuracy
of each method in 2D or 3D, but without taking into account
errors due to finite machine precision.

The semi-infinite chain considered here corresponds to the
propagation of an initially localized state on an infinite pe-
riodic 1D chain. Thus onsite energies are zero, the first
hopping energy is s

√
2, and all other hopping energies are s.

The propagation is computed until time T = 100~/s, and the
error is defined as the norm of |δψ〉 = |ψ〉computed − |ψ〉exact.
For each method, accuracy is improved by using smaller
time-steps and thus increasing the numerical cost, defined
as the total number Nit of iterations of Ĥ . The results are
presented in Fig. 1. First we notice that for the second order
Runge-Kutta and SOD methods, the error scales as 1/N2

it, in
agreement with the following rough estimate. The error at
each time-step ∆t is of order ∆t3. The total error is the sum
of errors due to Nit time-steps ∆t ∼ 1/Nit, thus it is propor-

Fig. 1. Comparison of three different propagation methods in a 1D peri-
odic system : accuracy versus numerical cost.

tional to 1/N2
it. With the optimized polynomial method, the

error decreases much more quickly and it is generally much
more efficient than second-order methods. 350 iterations of
Ĥ are sufficient to obtain an accuracy of 10−6, while more
than 800000 iterations are needed with the SOD method.

In this case, the optimized polynomial method is not more
efficient than the Chebyshev one, because the state is not
energy-filtered. Comparison with the Chebyshev method will
be presented elsewhere 10) for energy-filtered wave-packets.

Periodic boundary conditions

To complete our presentation of the numerical method, prob-
lems related to finite sample size are discussed. When
studying wave-packet dynamics, boundaries of the system
are quickly reached, especially when the state is energy-
filtered, in which case it is often initially extended to the
whole system. Finite-size effects can not be removed, but a
general way to suppress boundary effects is to use periodic
boundary conditions (PBC). In order to study the diffusivity
Dψ(t) = 〈ψ|(X̂(t)− X̂(0))2|ψ〉/t, we introduce the operator :

Â(t) = exp

�
2iπX̂(t)

L

�
exp

�−2iπX̂(0)

L

�
− 11 (4)

where L is the system length along the x direction, and
exp(2iπX̂(t)/L) = exp(iĤt/~) exp(2iπX̂/L) exp(−iĤt/~)
(note that a similar operator has been introduced by R.
Resta in order to study polarization effects). 12) In the
limit of short times t or large L, when the wave-packet has
spread on a small distance compared to L, Â(t) is close to
2iπ(X̂(t) − X̂(0))/L, as proved in Ref. 10. Introducing the
function

Iψ(t) = 〈ψ|Â+(t)Â(t)|ψ〉 (5)

the diffusivity can be approximated as :

Dψ(t) � 1

t

L2

4π2
Iψ(t) (6)

and the equality holds in the large L limit. Since bound-
ary effects have been suppressed, the L-behaviour of the ap-
proximate diffusivity (6) is expected to be more regular, and
reliable extrapolations for L→ +∞ can be made.

Application : random-flux lattice

We consider the so-called 2D random magnetic systems.
The nature of eigenstates in such systems is still a serious
matter of concern since the different numerical approaches
which have been used 13,14) lead to contradictions. But all
these studies gave similar results concerning the localization
of states close to the band-edges. Such states are consid-
ered here in order to test our method, with the same model
parameters as in reference. 14) The lattice is 200a × 200a
large with PBC and the hopping terms have modulus s. For
different configurations of random fluxes, we have obtained
filtered states with a very small energy-width ranging from
0.3% to 1% of the total bandwidth. The long-time evolu-
tion of Iψ(t) = 〈ψ|Â+(t)Â(t)|ψ〉, related to the diffusivity
(Eq. (6)), is shown in Fig. 2 for states filtered at E = −3.35 s
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Fig. 2. Time-evolution of I (t) ' 4�2
h(X̂(t)� X̂(0))2

i=L2 for energy-
filtered states on a random-flux lattice. The bold curve gives the
average over 21 configurations and a typical LDoS is shown in inset.
Time is in ~=s units.

and 21 configurations of random-flux. The calculated local-
ization length, ξ = 13a, is much smaller than the length
L = 200a of the system, which justifies the use of approxi-
mation (6). This value is in good agreement with,13,14) and
the scaling of ξ with energy has also been verified. In conclu-
sion, a sharp energy-filtering has been obtained, much better
than in Ref. 14. Since the filtered states are linear combi-
nations of many localized eigenstates, they are extended to
the whole sample, but the use of the function Iψ(t) has sup-
pressed boundary effects.

Conclusion

We have developed new tools to study quantum wave-packet
dynamics for tight-binding hamiltonians. These tools allow
to produce energy-filtered states with high energy resolution,

and to compute the evolution of wave-packets in an optimized
and numerically stable manner. We have also shown how to
suppress boundary effects for calculating diffusivity, by using
periodic boundary conditions. These methods can be gen-
eralized to the study of propagation of other type of waves,
acoustic or electromagnetic for example, provided that the
system is spatially discretized.
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