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Decoherence of the field state in the single-mode laser
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Department of Physics, Waseda University

The rate at which an initially pure field state goes into mixture is calculated for the single-mode laser under the
detailed balance condition. It is shown that the field state similar to the coherent state originally suggested by M. O.
Scully and W. E. Lamb, Jr. is selected as the most stable state among squeezed states, and that the speed of whole
decoherence process is strongly dependent on the quality factor Q of a laser cavity. In a laser cavity with extremely
high quality factor, squeezed states other than the Scully-Lamb ansatz remain stable on the observation time scale.

Introduction

While there is no doubt about preciseness of the quantum
theory especially in the atomic scale and below, the relation
between the quantum theory and the classical reality we usu-
ally experience in a macroscopic scale is still an issue of con-
troversy. The most counter-intuitive part in the formalism
of the quantum theory may be the superposition principle,
which allows a quantum system to be in two or more states
simultaneously. This paradoxical aspect of the quantum the-
ory is often illustrated with the infamous “Schrödinger’s cat”.

In the last two decades, a theory of decoherence 1,2) has been
developed as a solution to explain the obvious discontinuity
between the quantum world and the classical reality. It is
plausible to state that the system of interest in the macro-
scopic scale should be treated not as an isolated system but
as an open system continuously interacting with surrounded
systems with many quantum degrees of freedom (the envi-
ronment). According to the decoherence theory, it is exactly
this interaction which destroys the annoying superposition
states, and as a result of the negative selection process the
classical reality spontaneously emerges out of the quantum
states expressed in the Hilbert space.

W. H. Zurek and his collaborators identified classicality of
states with predictability and characterized the effective-
ness of decoherence process in terms of the predictability
sieve. They defined the “predictability sieve” as a method
to search for classical preferred states (the observable states
stable against the environment on the observation time scale)
by measuring the decoherence rate of pure initial states to
mixtures. The initial states which are least affected by the
environment are singled out as the best candidates for the
“preferred states”, while the states unstable compared to the
observation time are excluded as non-observable ones. They
studied the decoherence mechanism in a specific environment
model, where a quantum harmonic oscillator undergoes quan-
tum Brownian motion in thermal equilibrium.3) They demon-
strated by means of linear entropy that the coherent states
are singled out as the maximally predictive states.

In this presentation, the single-mode laser is investigated as
an extended general example of the environment model stud-
ied by Zurek and collaborators.3) The laser is known to be
a macroscopic open system in non-thermal equilibrium. In a
laser cavity, the electromagnetic field interacts with a laser
medium in steady energy flux, which is poured in by pumping

and poured out as transmission loss through a half mirror.
In this hot open system, the electromagnetic field is a system
of interest and other systems interacting with the field cor-
respond to an environment. The laser field is often assumed
to be a coherent state, but it is rather a coherent state with
phase diffusion in a mixed state than the Glauber coherent
state in a pure state,4) since the field is continuously subject
to decoherence from its environment. In the context of the
decoherence theory, it is easily inferred that the state similar
to the coherent state with phase diffusion should have the
longest life time and would be selected as the most stable
states in the decoherence process, whereas other states are
excluded as transient non-observable states.

The decoherence theory will be applied to the Scully-Lamb
single-mode laser model above threshold.5) Time evolution of
the field is numerically calculated under the detailed balance
condition on the photon number, where the photon statistics
of the field is in steady-state. Pure states with squeezing pa-
rameter are initially prepared and each decoherence rate is
computed by measuring increase of the uncertainty area of
the field quadrature-components.

Comparison to the previous studies

The Scully-Lamb single-mode laser master equation is
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where ω is the mode frequency, Q is the Q factor of the cav-
ity, A is the linear gain coefficient, B is the self-saturation
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ω ∼ 2π × 1015rad · t−1. The laser master equation (1) well
above threshold may be written in the general framework of
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the Lindblad form.8) The Lindblad form of evolution is writ-
ten as

L[ρ] =
1

i~
[H, ρ] +

1

2~

X
j

([Vjρ, V
†

j ] + [Vj , ρV
†
j ]). (4)

The environment effects in the Lindblad form master equa-
tion has recently been studied in terms of the predictabil-
ity.9,10) But the previous studies treated only the case of {Vj}
linear in position x̂ and momentum p̂,X

j

([Vjρ, V
†

j ] + [Vj , ρV
†
j ])

Vj = aj p̂ + bjx̂ (aj , bj : complex numbers),

which is known as an analytically solvable model,11) whereas
in the case of the laser model well above threshold, the gain
terms (the first and the second terms) of Eq. (1) include
{Vj} non-linear in position and momentum, or {Vj} non-
linear in the quadrature-components of the field amplitude
X̂ ≡ (â + â†)/2 and Ŷ ≡ (â − â†)/(2i)7) in the terminology
of quantum optics, asZ ∞
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ââ†
�
,

where â is the annihilation operator for photons defined by
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The non-linearity of {Vj} in the laser model comes from de-
pendence of the denominator on the photon number n and
m in the gain terms. This photon number dependence in the
gain terms is essential for the laser model, because it gives rise
to non-thermal equilibrium of the laser field, i.e ., the Poisso-
nian photon statistics, in steady-state, which is the notable
feature of lasers. Hence the laser model may be regarded as
an extended case of the previously studied model 9,10) to a
highly relevant non-linear system of the Lindblad form.

Decoherence rate under the detailed balance condition

In this presentation the laser system is supposed to be in en-
ergy steady-state operation, where the detailed balance con-
dition on the photon number states,

An

1 + B
A
n
ρn−1,n−1 −Cnρn,n = 0, (6)

is satisfied at any time t. In order to simplify calculations we
shall define parameters α, β and C such as α = A, β = A/B
and C = ω/Q, where α is dependent on the pumping rate
and C represents the photon loss velocity of a laser cavity.
The standard value of β is given as β = 3 × 107.12) From
Eq. (6) the steady-state solution of diagonal elements above
threshold (α/C > 1) is obtained as

ρn,n =
exp (−β − n̄)(β + n̄)β+n

(β + n)!
, (7)

where the average photon number is n̄ = β [(α/C) − 1].

In the master equation (1), diagonal elements have non-zero

steady-state solution Eq. (7), while off-diagonal elements do
not have non-zero steady-state solution.5) It means in steady-
state 〈Ê〉 = 0 and the field state has no phase coherency,
which is apparently against high coherency observed in the
laser field. This contradictory aspect of the laser field is now
understood by well-known analogy of ferromagnetism.5,6) In
ferromagnetism, the expectation value of magnetization is
zero in steady-state due to the nature of its openness. But
the magnetization deteriorates into steady-state mixture on
a global time scale, which makes it look constant on the ob-
servation time scale. The same argument is applied to the
laser model. Given that the field state is initially a pure state
being quite similar to the Glauber coherent state, the expec-
tation value of the electric field decays very slowly compared
to the observation time scale. Due to the stability of the ini-
tial field state on the observation time scale, the laser field
is considered to have remarkably high phase coherency. This
means that the ansatz at the initial time suggested by M.
O. Scully and W. E. Lamb, Jr. in their original paper 5) is
crucial to explain phase coherency of the laser field.

The field state is supposed to be a pure state at t = 0 and be
under the detailed balance condition at all time t ≥ 0, just
as the Scully-Lamb ansatz is. In this case, the solution for
Eq. (1) is written in the form
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√
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T (k)
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where ρn,n is Eq. (7), α/C > 1 and θn determines an initial
field state.

The phase order parameter ∆,

∆ ≡ (θn+2 − θn+1) − (θn+1 − θn) (n = 0, 1, 2 . . . ), (11)

is introduced for intial pure states with phase dependence on
n2. When phase is linear on n, i.e ., ∆ = 0, Eq. (8) cor-
responds to the Scully-Lamb ansatz whose density matrix
elements are all real, except that Eq. (8) has an arbitrary
phase constant. θn is

θn = θ0 + Θn + ∆
(n− 1)n

2
(n = 0, 1, 2 . . . ), (12)

where Θ ≡ θ1 − θ0 is an arbitrary phase constant.

Q function 13) of the field states expressed by Eqs. (8) and
(11) at t = 0 is
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≡ 1

π
〈α|ρ|α〉

=
1

π

"(X
n

p
fn(α)gn × cos

�
n(Θ − θα) +

∆

2
(n− 1)n

�)2

+

(X
n

p
fn(α)gn × sin

�
n(Θ − θα) +

∆

2
(n− 1)n

�)2#
,

(13)

where
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fn(α) ≡ exp(−|α|2)
(|α|2)n

n!
(14)

gn ≡ exp(−β − n̄)
(β + n̄)β+n

(β + n)!
, (15)

|α〉 is a coherent state and α = |α| exp(iθα).

As is shown in Fig. 1, the field states with ∆ are squeezed
states when |∆| is of the order n̄−1. ∆ determines both the
squeezing degree and the direction of squeezing at once, be-
cause the detailed balance condition restricts the quantum
fluctuation in the direction of coherent excitation as constant,
where the photon number variance is 〈(∆n)2〉 = n̄+β at any
∆.

(a)

(b)

(c)

Fig. 1. Q function of the squeezed states expressed with ∆. The photon
number average, n̄ = 1� 108. (a) The Scully-Lamb ansatz, ∆ = 0.
(b) The squeezed state at ∆ = 1� n̄�1. (c) The squeezed state at
∆ = 5� n̄�1.

By inserting Eqs. (8) and (12) into Eq. (1), the solution for
Eq. (1) is found in the form
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when T
(k)
n may be approximated as

T
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Equation (19) is valid when |∆| � 1 and Ct � 1. Note

that T
(0)
n (∆, t) = 1 regardless of any ∆ or t, i.e ., the detailed

balance condition Eq. (6) is rigidly satisfied at any ∆.

The linear entropy is calculated as

s(ρ) ≡ Tr(ρ− ρ2)

= 1 −
X
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n (∆)t].2,3) (20)

Since Eq. (17) has a relation p
(k)
n (∆) ≥ p

(k)
n (0) > 0, the

Scully-Lamb ansatz produces the linear entropy at the mini-
mum rate, thus becoming the most stable field state in energy
steady-state laser operation.

For the Hermitian amplitude operators of the two quadrature
phases X̂ ≡ (â + â†)/2 and Ŷ ≡ (â− â†)/(2i), we find
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Θ0(t) is defined to satisfy

〈(∆X)2〉(Θ0(t), t) ≤ 〈(∆X)2〉(Θ, t) (25)

for all Θ. If
p〈(∆X)2〉(Θ0(t), t) < 1/2, the field is a squeezed

state at time t. The angle χ(t) between the direction of
squeezing and the direction of coherent excitation is written
as

χ(t) = tan−1

 
〈Ŷ 〉
〈X̂〉

!
(Θ0(t), t).13) (26)

χ satisfies −π/2 ≤ χ < π/2.

Conclusion

As a result, it is shown that the Scully-Lamb ansatz is singled
out as the most stable state among squeezed states under the
detailed balance condition. Figure 2 is a result of numerical
calculation for the uncertainty area of the field quadrature
components, where the Scully-Lamb ansatz is clearly picked
out as the most stable state in the decoherence process. Fig-
ure 3 shows that the squeezed states remain squeezed for
times t � C−1. It is shown in Figs. 2 and 3 that the speed of
the whole decoherence process strongly depends on the pho-
ton loss parameter C, which is inversely proportional to the
quality factor Q of a laser cavity.

Fig. 2. The inverse of the uncertainty error area as a function of both

∆ and Ct. “Area” is
q
h(∆X)2ih(∆Y)2i(Θ = Θ0). n̄ = 1� 108.

The Scully-Lamb ansatz, ∆ = 0, is clearly picked out as time goes
on.

(a)

(b)

Fig. 3. Time evolution of squeezed states. n̄ = 1 � 108. ∆ =

0,�1 � n̄�1,�5 � n̄�1. (a) The minimum variance of X̂ on ro-
tation around the origin in phase space. A dashed line is the vacuum
fluctuation level. (b) The angle � between the direction of squeezing
and the direction of coherent excitation. ∆ = 0 has a discontin-
uous point from � = ��=2 to � = 0 between Ct = 0.095 and
Ct = 0.1, because during the time the quantum fluctuation in the
direction orthogonal to the direction of coherent excitation exceeds
the fluctuation in the direction of coherent excitation.

The photon loss velocity C is approximately evaluated as

C =
c(1 −R)

L
, (27)

where c is the light velocity, R is the reflectance of a cav-
ity mirror and L is the length of a cavity. 12) The conven-
tional standard value of C was given as more than of the
order 105s−1 (assumed as R = 99.95%, L = 1 m). In this
case, squeezed states are all washed away in the decoherence
process for much shorter times than the observation time
scale (assumed of the order 10−3s), and the Scully-Lamb
ansatz is the only stable state we can observe. Nonetheless,
a present laser cavity for a gravitational wave detector, e.g .,
a laser interferometer of VIRGO at Cascina in Italy, is about
to reach C of the order 100s−1 (assumed as R = 99.999%,
L = 3000 m). In such a cavity with extremely high quality
factor Q, squeezed states can exist for times long compared
to the observation time scale, thus becoming the second best
candidates for the “preferred states” in the “predictability
sieve” of the single-mode laser.
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