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Polynomial expansion of the spectral measures are used to generate efficient algorithms for investigating coefficients
of the linear response such as non-diagonal susceptibilities, or Kubo forumla for diagonal conductivity and Hall
conductivity in aperiodic systems. Applications for Chebyshev polynomials of first and second order are given.

Introduction

The purpose of this work is to present alternative approaches
based on real space schemes to enable in particular to com-
pute the so-called Rudermann Kittel Kasuya Yosida inter-
action (RKKY)1,2) an effective coupling between two local-
ized magnetic moments, mediated by conduction electrons
in many different situations, as well as quantum transport
coefficients. In high dimensional non periodic systems, one
usually investigates linear coefficients by way of scaling anal-
ysis through diagonalization of periodic hamiltonian. But, if
N is the number of states, exact diagonalization requires a
CPU time scaling as O(N3), and memory scaling as O(N2).
For sparse Hamiltonians, the use of Lanczos algorithm re-
duces memory and CPU time requirements to O(N).1,3) Here,
we develop quantum transport coefficients by development of
Kubo formula on orthogonal polynomials. The key point of
the algorithm lies in the rescaling of the density of states
after evaluating the upper and lower bounds on energy. In
principle, any orthogonal polynomials could be used, but it
turns out that manipulations of Chebyshev polynomials are
particularly recommended as they are isomorphic to Fourier
series.1)

Calculation of the non-local susceptibility

Indirect RKKY interaction 2,4) stems from the coupling be-
tween localized magnetic moments and propagating elec-
trons. If an electron in a state of energy E < EF under-
goes a transition to a state of energy E′ > EF because of
the coupling with the localized moment in | ri〉, then a hole-
electron pair is created and propagates coherently during a
certain time τ , with |E′ − E| ≤ ~/τ , until the pair is de-
stroyed by diffusion on another magnetic impurity located
in | rj〉. Accordingly the longer is the propagation time the
smallest will be the vicinity around Fermi energy that ac-
count for RKKY. The generic form of the effective coupling
between two magnetic impurities mediated by itinerant elec-
trons reads IRKKY (ri, rj , E) = J2χ(ri, rj , E)Sri .Srj with
J is the interaction between the localized moment Sri and
the spin of the itinerant electrons, and χ(ri, rj , EF ) contains
the sum of all the electron-hole propagation paths from |ri〉
to |rj〉. RKKY is then proportional to the electronic sus-
ceptibility χ(rij) of itinerant electrons. When J > 0 (resp.
J < 0), the configurations of parallel spins (resp. antiparal-

lel) will minimize the energy promoting ferromagnetic state
(resp. antiferromagnetic state). The susceptibility as a con-
tribution of all the scattering pathes of the hole-electron pair
can be written down as

χ(ri, rj) = − 1

2π
�m

Z +∞

−∞
dE G+(ri, rj , E)G−(rj , ri, E)

introducing the retarded (G−) and advanced Green’s func-
tions (G+) which define the amplitude of propagation of the
hole-electron pair. Note that there exists an exact sum rule
between the susceptibility and the local density of states
(LDoS)

P
j χ(ri, rj) = ρi(E) = −2

π
�m〈ri | G(z) | ri〉 which

is used as a numerical test.

In metallic systems with space dimension D, the interaction
is given by IRKKY (r,EF ) ∼ A(r) cos(2kF r + δ(r))/rD which
manifests a long range oscillating behavior.2) For a free elec-
tron gas, the A, δ are independent of r, whereas for weak
disorder limit, A(r) becomes a random but smooth function
of r and δ(r) is the phase shift associated to the scatter-
ing of electrons on impurities. δ(r) becomes random for
r > lpm (mean free path). To perform real space calcula-
tions of the non-local susceptibility, considering the Green
operator G(z) = (z −H)−1 =

R +∞
−∞

δ(E−H)
z−E

dE, one starts from
the general form of χ(ri, rj):

2�e

Z
E>EF
E′<EF

dEdE′ 〈ri | δ(E −H) | rj〉〈rj | δ(E′ −H) | ri〉
E − E′

The aim of the method is to determine the coefficients
〈ri | δ(E − H) | rj〉 without exact diagonalization, usually
limited to simple models and small finite size systems. Here
we use a basis of orthogonal polynomials {Pn(E)}n∈N as-
sociated to a normalized function ρ(E), referred as a model
density of states. If the spectral subset of ρ(E) contains the
one of the real hamiltonian, it can be shown that δ(E−H) =
ρ(E)

P
n Pn(E)Pn(H) and the {Pn(E)}n∈N satisfy to the

orthogonality conditionZ +∞

−∞
ρ(E)Pn(E)Pm(E)dE = δnm.

These relations enable to write 〈ri | δ(E − H) | rj〉 =

ρ(E)
P

n∈N Pn(E)αn
ij with αn

ij = 〈ri | Pn(H) | rj〉. From
these expressions, the susceptibility becomes

χ(ri, rj) = �e
X
nm

Imnα
n
ijα

m
ji
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Imn =

Z
E>EF
E′<EF

ρ(E)ρ(E′)
Pm(E)Pn(E′)

E − E′ dEdE′.

Accordingly, the calculation of χ(ri, rj) is splitted into two
independent parts. The Imn have an analytical form, while
recursive evaluation of coefficients αn

ij is performed by means
of the three term relations defining the orthogonal polyno-
mials. Generically their definition equation reads EPn(E) =
anPn(E) + bnPn+1(E) + bn−1Pn−1(E) with b−1 = 0, n ≥ 0,
with an, bn the associated recursion coefficients,3) the main
vectors to be evaluated recursively will follow from

| ϕn
i 〉 = Pn(H) | ri〉 =

X
j

αn
ji | ri〉.

Pratically, we will consider the Chebyshev polynomials of sec-
ond order, which are defined by Pn(H) = 1

b
(H− a)Pn(H) +

Pn−1(H) with P−1(H) = 0 and P0(H) = 11 and the corre-
sponding weight is given by ρab(E) = 1

2πb2

p
4b2 − (E − a)2

which is �= 0 only for E ∈ [a− 2b, a + 2b]. The coefficients a
and b are given by the calculated limits an→∞, bn→∞ for the
real densities of states. From the abovementionned relations,
the | ϕn

i 〉 will be given by | ϕn
i 〉 = 1

b
(H − a) | ϕn

i 〉+ | ϕn−1
i 〉

and | ϕ−1
i 〉 = 0, | ϕ0

i 〉 =| ri〉. In the tight-binding scheme H =P
pq γpq | rp〉〈rq |, one shows that the αn

ij coefficients have to

be evaluated recursively through (α−1
pj = 0, α0

pj = δpj ,∀p)

αn+1
ij =

1

b
(
X

p

αn
ipγpj − aαn

ij) − αn−1
ij

To evaluate Imn, we then first we rearrange the initial form

Imn =

Z
E>EF
E′<EF

ρ(E)ρ(E′)
Pm(E)Pn(E′)

E − E′ dEdE′

by noticing that the factor 1/(E −E′) can be written asI
Γ

dz

(z − E)(z −E′)
=

2iπ

E − E′
�
Θ(E′ − EF )Θ(EF − E)

−Θ(E − EF )Θ(EF − E′)
�

with the Heaviside function (Θ(x) = 0, x < 0 and Θ(x) =
1, x > 0) and the contour Γ in the complex plane is given for
η → 0, RΓ → ∞. It thus follows:

�e(Imn + Inm) = − i

2π

I
Γ

dz

�Z ∞

−∞
dE

ρ(E)Pn(E)

z − E

�

×
�Z ∞

−∞
dE′ ρ(E′)Pm(E′)

z − E′

�

By application of Jordan Lemme, the integral on the con-
tour Γ tends to zero when the radius goes to infinity, and
only remains four integrals on the real axis respectively for
[−∞, a−2b], [a−2b, EF ], [EF , a+2b], [a+2b, +∞]. Using the re-
lation between first and second order Chebyshev polynomials
defined on [−1,+1] and associated with ρ(E) =

√
1 − E2

lim
η→0±

Z +1

−1

√
1 −E2Pn(a + 2bE)

ω + iη −E
dE

= π{Qn+1(ω) ∓ iπ
p

1 − ω2Pn(ω)}

it is easy to show that for | ω |≤ 1, with ω = cosφ then
Qn(ω) = cosnφ and Pn(ω) = sin(n+1)φ

sin φ
, and finally

lim
η→0±

Z +1

−1

√
1 −E2Pn(a + 2bE)

ω + iη −E
dE = π exp(∓i(n + 1)φ)

In conclusion, given that the integration outside [−1, 1] leads
to pure imaginary terms, the calculation of Imn reduces to
�e(Imn + Inm)

1

2πb

�
sin(m + n + 3)AF

m + n + 3
− sin(m + n + 1)AF

m + n + 1

�

where AF =Arcos( EF −a
2b

). The final form of the electronic
susceptibility for a general tight-binding hamiltonian will be
defined by

1

2πb

X
nm

αn
ijα

m
ji

�
sin(m + n + 3)AF

m + n + 3
− sin(m + n + 1)AF

m + n + 1

�

which is the final form of the algorithm. Test of the numerical
convergence and illustrations on physical applications have
been shown elsewhere.5,6)

Kubo formula for diagonal conductivity

The real-space calculation of the Kubo formula of the elec-
tronic conductivity may be considered as an alternative of
usual Landauer conductance calculations, or diagonalization
methods. Indeed, the use of Landauer formula for investi-
gating quantum zero temperature transport is usually asso-
ciated with free escape boundary conditions. Direction per-
pendicular to the current density is assumed to be periodic
whereas the other, of size L, is connected to metallic leads
with different chemical potentials. Scaling analysis is per-
formed through L. With recursion method, exact diagonal-
ization of the Hamiltonian are avoided, so that in principle
larger class of complex systems can be studied. To reduce
the possible numerical instability at boundary conditions in-
duced by the velocity operator (periodic boundary conditions
will indeed generate a short-circuit across the sample), the
following transformation the Kubo formula is very suitable
(X̂ (t) = eiHt/~X̂e−iHt/~ and X̂ is the component along direc-
tion x of the position operator, Ω the volume of the system):

σxx(EF ) =
2~e2π

Ω
lim

t→∞
Tr[δ(EF −H)

(X̂ (t) − X̂ (0))2

t
]

where the asymptotic behavior of the quantum diffusion of
the wave-packets can be easily kept under control.8) The con-
ductivity reads:

2~e2π

Ω

X
jx,jy

Dj(t) × �m
η→0

〈eΦj(t) | G(EF + iη) | eΦj(t)〉

where Dj(t) =
〈Ψj(t)|X̂2|Ψj(t)〉

t
and with | Ψj(t)〉 =

e−iHt/~| jx, jy〉, | Φj(t)〉 = X̂ | Ψj(t)〉 and | eΦj(t)〉 its nor-
malized form. The summation should be done over the total
basis of states |jx, jy〉, but it turns out that a limited number
of initial sites is sufficient to achieve convergence of the cal-
culation (given that there is an inherent averaging process).7)

The time-dependent evolution of a wave-packet initially lo-
calized at |jx, jy〉 is also evaluated by polynomial expansion of
the evolution operator e−iHt/~ =

P
n(
R
dEPne

−iEt/~)Pn(H)
where we choose Chebyshev polynomials of first kind. Here
one has to notice that the dynamical properties given by the
method are averaged over all the spectrum, which may be
limited when properties are strongly dependent of the posi-
tion of Fermi level. Improvements of the method to investi-
gate energy-dependent wave packet diffusion have been made
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recently.8)

Hall Kubo conductivity

For computing the non-dissipative conductivity σxy, one can
also follow a real-space approach of Hall conductivity. 9,10)

Starting from the general off-diagonal form of the Kubo con-
ductivity, one shows that a possible algorithm is given by:

σxy = − ie2
~

2Ω

Z
E2>EF
E1<EF

dE1dE2
f(E1) − f(E2)

E1 − E2
〈Ẏ, Ẋ 〉

with 〈Ẏ, Ẋ 〉 = Tr[δ(E1 −H)Ẏδ(E2 −H)Ẋ ]. This formulation
enables the expansion of the spectral measure on the basis
of Chebyshev polynomials. Note that Ẋ and Ẏ are the time
dependent position operators in both respective directions of
the plane. Some simple algebra yields two part to be evalu-
ated separately:

σxy = − ie2
~

2Ω

X
m,n,|i〉

Imn × 〈ix, iy |Pn(H)ẎPm(H)Ẋ |ix, iy〉

where Imn is analytical and depends on the choice of the
polynomial basis. In our case, it corresponds to (AF =
Arcos( EF −a

2b
), and a.b associated to the weight function of

Chebyshev polynomials):

Imn =
1

πb

�
sin(m + n + 3)AF

(m + n + 3)
− sin(m + n + 1)AF

(m + n + 1)

�

The other part implies the calculation of the coefficients
〈jx, jy |Pn(H)ẎPm(H)Ẋ |jx, jy〉. A reasonable number of ini-
tial sites |jx, jy〉 should be considered. The sum over m and
n-indice is, given the form of the Imn factors, limited by some
appropriate cut-off.
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