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The forced oscillator method (FOM) is particularly suitable to treat very large matrices by using advanced modern
supercomputers. This method enables us to calculate in an efficient way spectral densities, eigenvalues, and their
eigenvectors of large-scale matrices. In addition, linear response functions of systems described by these matrices can
be computed by the FOM. We have also developed the finite-time scaling approach to obtain the precise value of
dynamical exponents with less computational effort. It is shown that the power law behavior �(!) / !

1/3 is hold
in the critical region of the metal-insulator transition for 3D Anderson systems.

1. Introduction

The importance of eigenvalue analysis of very large matri-
ces has been well recognized in many fields of science and
engineering. As sizes of matrices become large, calculations
by conventional methods are difficult, since the computing
time as well as the memory space grows very rapidly. So far,
many algorithms, suitable to treat very large matrices, have
been developed. Among these, the forced oscillator method
(FOM) offers a powerful way handling very large N ×N ma-
trices, namely computing accurately spectral densities, eigen-
values, and their eigenvectors of very large matrices. The
FOM was initially proposed for obtaining eigenvalues and
their eigenvectors of a lattice dynamical problem described
by Hermitian matrices.1,2) The FOM has been extended in
order to treat large-scale non-Hermitian matrices.3) It is now
possible to treat not only the eigenvalue problems of lattice
dynamics, but also of the general type of matrices by map-
ping them onto those of lattice dynamics.4)

Particular advantages of the FOM lie on being easily vector-
ized for implementation on an array- or parallel-processing
modern supercomputer. This is due to the fact that a time-
consuming part in the computation is to solve the equation of
motion and the program is easily optimized. It is becoming
common by this method to treat matrices with N ∼ 107 or
more. The FOM enables us to calculate the linear response
functions of quantum systems.5) The method is broadly ap-
plicable and may be of importance in a variety of physical
systems.

Using this technique, we have investigated the dynamic scal-
ing behavior of ac conductivity σ(ω) in three dimensional
(3D) Anderson systems. A new scaling approach has been
proposed, utilizing the characteristics of the FOM, to deter-
mine the dynamical exponent of the ac conductivity σ(ω) ∝
ωδ near the Anderson transition with high speed and accu-
racy.6,7) This paper we presents the algorithm to calculate
the Kubo-Greenwood formula8) of ac conductivity σ(ω), and
demonstrate the numerical results of σ(ω) near the Ander-
son transition which behave as σ(ω) ∝ ωδ (δ � 1/3) for all of
universality classes.

The outline of this paper is as follows. Section 2 gives the
efficient algorithm for computing linear response functions

of quantum systems. In Section 3, we apply this algorithm
to calculate the Kubo-Greenwood formula of ac conductiv-
ity. Section 4 shows the calculated results of σ(ω) for the
3D Anderson model near the transition. Section 5 presents
the finite-time scaling method for the dynamical exponent of
σ(ω) ∝ ωδ. A summary is given in Section 6.

2. Linear response functions for quantum systems

Linear response function are quite important to gain insight
into dynamical properties of quantum systems. Calculations
of linear response functions for quantum systems described by
N×N Hamiltonian matrices normally require the evaluation
of all eigenvalues and corresponding eigenvectors. As sizes
of matrices become large, standard diagonalization routines
require a large amount of the computing time proportional
to O(N3) as well as memory space proportional to O(N2).
They remain limited to systems of modest size because of the
high computational cost.

We have developed the algorithm based on the FOM to calcu-
late linear response functions of quantum systems described
by large-scale Hamiltonian matrices. The advantages of this
method compared to existing methods are that (1) it requires
memory space of the order of N for sparse matrices, (2) the
computing time is proportional to N2, and (3) it is easily
vectorized and parallelized for implementation in an array-
processing modern supercomputer. The last advantage is due
to the fact that the time-consuming part in computations is
to solve equations of motion and the program is easily opti-
mized.

Consider a quantum system described by

Ĥ =
X
mn

Kmn|m〉〈n| (m,n = 1, 2, . . . , N), (1)

where 〈m| is the bra vector in an arbitrary notation. Since
the set {|m〉} satisfies the closure relation Pm |m〉〈m| = 1,
an arbitrary state is expressed as

|Ψ(t)〉 =
X
m

am(t)|m〉. (2)

We impose a small perturbation V̂ to the system expressed
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by

V̂ = −1
2

X
α

x̂α(f
α
0 e

−iωt + c.c.), (3)

where x̂α is the α component of the generalized displacement
and fα

0 is the corresponding generalized force. c.c. indicates
a complex conjugate. Substituting Eqs. (1) and (3) into the
Schrödinger equation for |Ψ(t)〉 and multiplying by 〈k| from
the felt, one has the inhomogeneous coupled linear differential
equation

i~
dam(t)

dt
−
X

n

Kmnan(t) =
X

α

X
n

V α
mn(t)an(t). (4)

For a small perturbation, the time-dependent first-order per-
turbation theory is applicable by putting am(t) = a

(0)
m (t) +P

α a
(1)
mα(t) into Eq. (4). The first-order equation becomes

i~
da

(1)
mα(t)

dt
−
X

n

Kmna
(1)
nα(t)

= −~

2
(Fmαe

−iωt + F̃mαe
iωt)e−iωλ0t. (5)

Here

Fmα =
X

n

fα
0

~
xα

mnun(λ0), (6)

F̃mα =
X

n

fα∗
0

~
xα

mnun(λ0), (7)

where um(λ0) ≡ 〈m|ωλ0〉 is the mth element of the initial
eigenvector belonging to the eigenvalue ωλ0 of the matrix
{Kmn}. Here we assume that the unperturbed state is given
by a

(0)
m (t) = um(λ0)e

−iωλ0 t.

Let us introduce the “resonance” function defined by

Eαβ(Ω, t) =
X
m

a(1)∗mα (t)a
(1)
mβ(t). (8)

By substituting the solution of Eq. (5) into Eq. (8), one has

Eαβ(Ω, t) =
X

λ

�����
X
m

Fmαu
∗
m(λ)

�����
2
sin2{(ωλ − Ω)t/2}

(ωλ − Ω)2
, (9)

where Ω = ωλ0 + ω, and the contribution from the second
term on the right hand side of Eq. (5) is ignored since we
consider the case of zero temperature (see Ref. 5). The eigen-
vectors contributing to the sum in Eq. (9) are those whose
frequencies lie within about ±(2π/T ) of Ω, where T is the
time interval. Suppose that the following conditions are sat-
isfied:

1

Ω

 T 
 4π

∆ω
, (10)

where ∆ω is the average eigenfrequency spacing. Taking
a proper time interval T satisfying the condition Eq. (10),
Eq. (9) gives

Eαβ(Ω, T ) =
πTfα∗

0 f
β
0

2~2

X
λ

〈ωλ0 |x̂α|ωλ〉

× 〈ωλ|x̂β|ωλ0〉δ(ωλ − Ω), (11)

where the following representation was used;

X
m

Fmαu
∗
m(λ) =

fα
0

~
〈ωλ|x̂α|ωλ0〉. (12)

The generalized susceptibility χαβ(ω) is given by the Kubo
formula 9) under the generalized external force defined in
Eq. (3),

χαβ(ω) =
i

~

Z ∞

0

eiωt〈[x̂α(t), x̂β(0)]〉dt, (13)

where angular brackets denote the thermal average. At the
zero temperature, the imaginary part of the generalized sus-
ceptibility for a given initial state |ωλ0〉 is expressed by

χ′′αα(ω) =
π

~

X
λ

|〈ωλ0 |x̂α|ωλ〉|2 δ(ωλλ0 − ω) (14)

where ωλλ0 = ωλ − ωλ0 . Choosing f
α
0 = 1, χ′′αα(ω) can be

expressed by the resonance function given by Eq. (11) as

χ′′αα(ω) =
2~Eαα(Ω, T )

T
. (15)

This relation is the key equation that relates the resonance
function Eαα(Ω, T ) to the imaginary part of the generalized
susceptibility χ′′αα(ω).

3. Computing the Kubo-Greenwood formula

This Section describes the relationship between the Kubo-
Greenwood formula for the ac conductivity and the resonance
function defined by Eq. (8) via the imaginary part of the gen-
eralized susceptibility χ′′(ω).

The generalized conductivity is expressed as 9)

Σ(ω) =
1

~ωLd
lim
ε→0

Z ∞

0

eiωt−εt〈[Ĵ(t), Ĵ(0)]〉dt, (16)

where Ĵ(t) is the current operator and the angular brackets
mean the thermal average. From this one can derive the ac
conductivity σ(ω) by setting x̂ = Ĵ in Eq. (14). Taking ac-
count of the Fermi distribution function f(ω) at T = 0, the
ac conductivity σ(ω) is expressed by the imaginary part of
the generalized susceptibility χ′′(ω) as

σ(ω) =
2

ωLd

X
ωλ0

χ′′(ω)[f(ωλ0)− f(ωλ0 + ω)]

=
2

ωLd

ωFX
ωλ0=ωF−ω

χ′′(ω), (17)

where the spin freedom is taken into account and the defi-
nition of the Fermi frequency is ωF = EF/~. The meaning
of
PωF

ωλ0=ωF−ω is the sum over the initial state |ωλ0〉 at zero
temperature. Equation (17) is shown to be equivalent to the
Kubo-Greenwood formula as follows: Equation (17) can be
rewritten as

σ(ω) =
2

ω

Z EF

EF−~ω

dEλ0D(Eλ0)χ
′′(ω), (18)

where D(Eλ0) means the spectral density of states (DOS)
at the eigenenergy Eλ0 = ~ωλ0 . Substituting Eq. (14) into
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Eq. (18), one has,

σ(ω) =
2πe2

~ω

X
ωλ

�Z EF

EF−~ω

dEλ0 |〈ωλ|v̂|ωλ0〉|2

×D(Eλ0)δ(ωλ0 + ω − ωλ)

�
, (19)

where v̂ is the velocity operator. The use of the relation
Σλ = L

d
R D(Eλ)dEλ in Eq. (19) yields

σ(ω) = 2πe2~Ld

Z EF

EF−~ω

dEλ0

|〈ωλ0 + ω|v̂|ωλ0〉|2
~ω

×D(Eλ0)D(Eλ0 + ~ω). (20)

This is the Kubo-Greenwood formula.8)

From Eqs. (15) and (17), the explicit form of the ac conduc-
tivity, expressed by the resonance function given by Eq. (8),
becomes

σ(ω) =
4~

ωTLd

ωFX
ωλ0=ωF−ω

E(Ω, T ), (21)

where the time T satisfies the condition 1/Ω
 T 
 4π/∆ω.
We should emphasize that the accuracy of the calculated re-
sults becomes better as the system size N increases since
many modes are included in the resonance width 4π/T .

4. AC conductivity of disordered electron systems

In order to assess the efficiency of this algorithm, we con-
sider noninteracting electron systems with disordered poten-
tials. The metal-insulator transition in disordered electron
system is called the Anderson transition,10) and their critical
behavior are classified into three universality classes accord-
ing to the basic symmetry of the Hamiltonian, namely, the
orthogonal, the unitary, and the symplectic classes.11) The
ω1/3 dependence of σ(ω) at the 3D Anderson transition was
predicted by Wegner 12) using the single-parameter scaling
hypothesis, but this dependence was not verified numerically
until the work by Lambrianides and Shore.13) They evaluates
the Kubo-Greenwood formula for orthogonal systems by di-
rectly calculating eigenvectors of the order of 105 for system
sizes L = 6 − 14 and by pulling out the DOS D(ωλ0) and
D(ωλ0 + ω) from the integral in Eq. (19). We do not need
to do so to calculate the ac conductivity since the informa-
tion on the DOS is automatically involved in our algorithm
though Eq. (9).

We have investigated the dynamical exponents in 3D unitary
and symplectic systems in addition to orthogonal one. For
these systems different from orthogonal one, the Hamiltonian
matrices become complex and/or posses spinor components
so that it is not easy to calculate σ(ω) with conventional
methods. Within our knowledge, the present work is the first
numerical realization of the ω1/3-behavior of σ(ω) in unitary
and symplectic systems.7)

The Hamiltonian of the system is given by

H =
X
i,σ

Wi,σ |iσ〉〈iσ|+
X

i,σ;j,σ′
Vi,σ;j,σ′

��iσ〉〈jσ′�� , (22)

where i denotes the lattice site, and σ the spin, respectively.
We set the lattice constant to be unity and only the near-
est neighbor coupling is taken into account. The on-site po-
tentials {Wi} are assumed to be distributed independently,
and the distribution is taken to be uniform in the range
[−W/2,W/2]. In the orthogonal case, Vi,σ;j,σ′ = V δσ,σ′ is
real, while Vi,σ;j,σ′ is V exp (iφi,j) δσ,σ′ in the unitary case
with the Peierls phase factor φi,j. In both cases, no spin
flip process is included. In the symplectic case, the hopping
energy is described by

Vi,σ;i−k,σ′ = V [exp (−iθσk)]σ,σ′ , k ≡ x̂, ŷ, ẑ (23)

where σk are Pauli matrices.
14) We set the hopping amplitude

V the energy unit.

In order to discuss the dynamic properties in the vicinity
of the Anderson transition, we set the disorder strength
W =WC = 16.5 for an orthogonal case,15) andWC = 17.9 for
an unitary case,16) assuming uniform magnetic flux penetrat-
ing through a x-y plane unit cell is set to be 0.2 times the flux
quantum. For symplectic case, we set θ = π/6 in Eq. (23),
and W is set to the critical value WC = 19.0.17) The Fermi
energy EF is fixed to the band center. Actual simulations
have been performed for systems with 30 × 30 × 30 lattice
sites for all cases. In each case, averaging over 20 indepen-
dent realization of random potentials has been performed.

Figure 1 presents the calculated results of σ(ω) for symplec-
tic cases taking various time interval T = π/2–200π. The
corresponding resonance widths become 4π/T = 0.02–8.0 in
units of V = 1. We see from Fig. 1 that the calculated re-
sults follow the ω1/3-behavior with increasing time interval T
over two orders of magnitude on frequency. The results for
orthogonal and unitary case are quite similar to Fig. 1 (see
Ref. 7 and references therein).

5. Finite-time scaling approach

In this section we present the finite-time scaling approach
for determine the critical exponent of the ac conductivity
σ(ω) ∝ ωδ and the calculated results of δ for unitary and

���� ��� �

����

��� �π�����	��
������������

���������
��

������������

������������

�����������
�

�������������

������������


������������	

�������������

�������������

������������


�σ(
ω

)

ω

Fig. 1. Calculated ac conductivity �(!) near the 3D Anderson transition
for symplectic system. Time duration dependence is shown.
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symplectic systems. This scaling approach is based on the
fact that the number of eigennmodes contributing to the sum
on λ in Eq. (9) depends on the resonance width of sinclike
function 4π/T , which is inversely proportional to the time
interval T for which the external force is applied.

As mentioned in Section 4, the 3D Anderson model described
by Eq. (22) exhibits the metal-insulator transition, and the
ac conductivity σ(ω) at the transition point (W = Wc and
~ωF = 0) follows

σ(ω) ∝ ωδ, (24)

with δ = 1/3. Since the DOS near ωF = 0 (the critical point)
is almost constant, there is no characteristic energy at criti-
cality. Therefore, only the time interval T characterizes the
time scale of the system. Thus, the T -dependent ac conduc-
tivity can be assumed to be written in the scaling form:

σ(ω, T ) = T−δG(ωT ), (25)

where the asymptotic form of G(z) should be

G(z) ∝
(
zδ ; for z � 1

const. ; for z 
 1
. (26)

The asymptotic form for z 
 1 is due to the fact that the res-
onance function given by Eq. (9) does not depend on Ω if the
time interval T is short because the sinc function in Eq. (9)
has a broad peak for small T . The above asymptotic forms
can be also confirmed by Eq. (9) and using the constant DOS
near ωF = 0. By fitting the calculated results of σ(ω, T ) in
Section 4 to the scaling function G(z), one can estimate the
exponent δ with high speed and accuracy.

Figure 2 shows the scaling function G(z) defined in Eq. (25)
for symplectic system. The most likely fit is determined by
χ2-statistic, and the confident intervals for fitting parameters
were estimated from the Bootstrap procedure. The calcu-
lated results of the exponent is δ = 0.34±0.01 for symplectic
and orthogonal case, and δ = 0.34 ± 0.02 for unitary case,
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Fig. 2. The scaling function G(z) for symplectic systems. The calculated
results of the exponent is Æ = 0.34� 0.01.

respectively. These values agree well with the prediction of
the scaling theory for the ac conductivity σ(ω).12)

6. Summary

We have proposed a method for computing linear response
functions for quantum systems described by large-scale
Hamiltonian matrices. The method is based on solving the
Schrödinger equation numerically in the presence of a gen-
eralized external force. We have furthermore presented the
finite-time scaling method for computing the exponent of the
frequency dependence σ(ω) ∝ ωδ near the Anderson transi-
tion. This method is especially powerful for evaluating the
precise value of δ with high speed and accuracy. Although
we have examined only conductivity problems, the present
method is rather general, so it should be applicable for cal-
culating various types of linear response functions. This issue
is especially relevant in quantum systems in a variety of phys-
ical contexts.
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