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A general scheme is introduced to evaluate the Green function by recursive polynomial expansion. This scheme has
the following advantages: (1) it is possible to calculate both the diagonal and off-diagonal elements of the Green
function, and also their products with other quantum operators, (2) energy spectrum can be obtained with any
desired resolution by controlling the expansion order, (3) it is applicable to the system with discrete eigenstates, and
(4) integrated density of states, eigenvalues, and corresponding eigenvector, can be obtained by the same algorithm.
It is also suitable for vector and parallel processing, and required CPU time and memory size are proportional only to
the system size (i.e. ordered N). Applications are made to simple lattice systems for demonstration.

1. Introduction

In order to evaluate physical properties of a system described
by a large Hamiltonian matrix, several methods have been
proposed. It is required for these methods that one can avoid
the direct diagonalization of the Hamiltonian, and that the
required computer resources are proportional to the system
size (i.e. ordered N). Among these methods, the recursion
method 1) has been most commonly used and found a great
variety of applications. The method has however some am-
biguity due to the terminator, and suffers from unphysical
oscillation in the Green function at high expansion orders.

Recent approaches of the time-dependent method, such as the
forced oscillator method (FOM)2–4) and the time-dependent
Schrödinger equation (TDSE) method,5–7) are free from those
unphysical features mentioned above, and provide more ac-
curate schemes. They follow the time development of the
system numerically, and evaluate several physical properties
in the time domain.

On the other hand, recursive approaches based on the
Tchebycheff polynomials have been proposed by many re-
searchers.8) They expand important functions, such as the
delta9,10) and Green function,11) by the set of the Tchebycheff
polynomials, and evaluate physical properties in the energy
domain.

In this paper, we extend the Tchebycheff polynomial method,
and introduce a general scheme to evaluate the Green func-
tion by recursive polynomial expansion. To demonstrate the
efficiency of the scheme, we applied it to simple square lat-
tice systems in two dimension. It is shown that the Green
functions are evaluated with sufficient accuracy even when
the spectrum has a strong discrete nature.

2. Calculation scheme

2.1 General theory
The basic idea of this method is to expand the Green function
by a set of orthogonal polynomials {φn(x)}, which satisfies

the following orthogonality and completeness conditions,
Z ∞

−∞
W (x)φ∗

n(x)φm(x)dx = wnδnm, (1)

δ(x− x0) =

∞X
n=0

W (x)

wn
φ∗

n(x)φn(x0). (2)

There always exists a three-term recurrence formula in the
form,

φn+1(x) = bn(x− an)φn(x)− cn−1φn−1(x), (3)

for these kind of polynomials. Let us consider to expand the
Green function by the set of polynomials {φn(x)} as,

G(E + iη) =
1

E + iη −H
=

∞X
n=0

1

wn
Cn(E + iη)φn(H). (4)

The expansion coefficient Cn(E+ iη) is given by the integra-
tion,

Cn(E + iη) =

Z ∞

−∞
W (x)

1

E + iη −H φ
∗
n(x)dx. (5)

When using the above set of polynomials, we can separate
the integration into the parts with and without singularity,
and reduce it elemental one;

Cn(E + iη) =

�Z ∞

−∞

W (x)

E + iη −Hdx
�
φ∗

n(E + iη)

+ψn(E + iη), (6)

where ψn(x) is the polynomial which satisfies the recurrence
formula (3),

ψn+1(x) = bn(x− an)ψn(x)− cn−1ψn−1(x), (7)

with ψ0(x) = 0 and ψ1(x) = 1. Then the coefficient Cn(x) is
no more a polynomial, but also satisfies the same recurrence
formula,

Cn+1(x) = bn(x− an)Cn(x)− cn−1Cn−1(x). (8)

20



For several orthogonal polynomials, the integration of the
first term in Eq. (6) can be done analytically, and we can
obtain the expansion coefficients Cn(E + iη) in Eq. (4) in
the analytic form. Some examples are shown in the following
section.

Note that the Green function is separated into the energy
dependent part (Cn(E)) and the system dependent part
(φn(H)) in these equations. For each choice of a polynomial,
the coefficient Cn(E) is a universal function independent of
the system, and one needs to calculate it only once and for
all.

2.2 Relation to time dependent approach
There is a close approach to our method, which evaluates sev-
eral physical properties by using the time-development oper-
ator e−iHt expanded by a set of polynomials {φn(H)} in the
form,12–14)

e−iHt =
∞X

n=0

C′
n(t)φn(H). (9)

Our method is related to it through a Fourier transformation
of the expansion coefficients C′

n(t) and Cn(E) as,

Cn(E) = −i
Z ∞

−∞
θ(t)C ′

n(t)e
iEtdt, (10)

where θ(t) is the step function. This is trivial from the rela-
tion,

G(E) = −i
Z ∞

−∞
θ(t)e−iHteiEtdt. (11)

2.3 Expansion by Hermite polynomials
The Hermite polynomialHn(x) is defined in the infinite range
[−∞,∞] by Rodrigues’ formula,

Hn(x) = (−)ne x2
2

�
d

dx

�n

e−
x2
2 , (12)

and satisfies the orthogonality,
Z ∞

−∞
e−

x2
2 H∗

n(x)Hm(x)dx = n!
√
2πδnm. (13)

According to Eqs. (4) and (6), the Green function is expanded
by the Hermite polynomials into the form,

G(E) = lim
N→∞

NX
n=0

CH
n (E)Hn(H), (14)

CH
n (E) =

1

n!
√
2π

×
�
e−

x2
2

�
π

i
Erf

�
i
E√
2

�
− iπ

�
Hn(E)−Hn(E)

�
, (15)

where Erf(z) is the error function and Hn(x) is the poly-
nomial obtained from the same recurrence formula that the
Hermite polynomial satisfies, with H0(x) = 0 and H1(x) = 1.

2.4 Expansion by Jacobi polynomials
The Jacobi polynomial P

(α,β)
m (x) is defined in the finite range

[−1, 1] by Rodrigues’ formula,

P (α,β)
n (x) =

(−)n
2nn!

(1− x)−α(1 + x)−β

×
�
d

dx

�n n
(1− x)n+α(1 + x)n+β

o
, (16)

and satisfies the orthogonality,

Z 1

−1

W (α,β)(x)P (α,β)
n

∗(x)P (α,β)
m (x)dx = w(α,β)

n δnm, (17)

where W (α,β)(x) and w
(α,β)
n are the weight function and nor-

malization integral defined as,

W (α,β)(x) = (1− x)α(1 + x)β, (18)

w(α,β)
n =

2α+β+1

2n+ 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
. (19)

When expanding the Green function by the Jacobi polyno-
mials, we have to use the rescaled energy parameter Ẽ and
Hamiltonian matrix H̃ so that the eigenvalues lie within the
range [−1, 1], because the Jacobi polynomials are defined in
this range. The rescaled energy and Hamiltonian are given
by,

Ẽ =
E − a
2b

, H̃ =
H − aI
2b

, (20)

where I is the unit matrix, and the parameters a and 4b are
to be so chosen that they roughly correspond to the band
center and the band width, respectively. However these pa-
rameters are arbitrary as far as the eigenvalues of the original
Hamiltonian H lie within the range [a − 2b, a+ 2b]. The re-
sult of the calculations is very insensitive to the choice of the
parameters. This implies a great advantage over the recur-
sion method that we need not know the positions of the exact
band edges prior to the calculation. Hereafter, we use E and
H instead of Ẽ and H̃ for convenience.

According to Eqs. (4) and (6), the Green function is expanded
by the Jacobi polynomials as,

G(E + iη) =
∞X

n=0

1

w
(α,β)
n

C(α,β)
n (E + iη)P (α,β)

n (H), (21)

C(α,β)
n (E) = −2

α+β+1B(α+ 1, β + 1)

1− E
× 2F1(1, β + 1;α+ β + 2;

2

1− E )P
(α,β)
n (E)

−Q(α,β)
n (E), (22)

where B(α, β) and 2F1(1, α + 1;α + β + 2; z) are the beta
function and the hypergeometric function, respectively. The
functions Q

(α,β)
n (x) are the polynomials obtained from the

same recurrence formula that the Jacobi polynomials satisfy,
with Q

(α,β)
0 (x) = 0 and Q

(α,β)
1 (x) = 1.

We introduce two special cases of the Jacobi polynomial for
the practical calculation. When choosing α = β = 0, the
Jacobi polynomial becomes the Legendre polynomial, and
Eqs. (21) and (22) are reduced to

G(E) = lim
N→∞

NX
n=0

CL
n (E)Pn(H), (23)
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CL
n (E) =

2n+ 1

2
{2ReQn(E + i0)− iπPn(E)} , (24)

where Qn(z) is the Legendre function of the second kind.

This function appears in relation to Q
(α,β)
n (z), but the defi-

nition is different for historical reasons.

On the other hand, when choosing α = β = − 1
2
, the

Jacobi polynomial becomes the Tchebycheff polynomial, and
Eqs. (21) and (22) are reduced to

G(E) = lim
N→∞

NX
n=0

CT
n (E)Tn(H), (25)

CT
n (E) =

2− δn0√
1− E2

{−Un(E)− iTn(E)} , (26)

where Un(x) is the Tchebycheff function of the second kind.

3. Practical calculations

3.1 Calculation of matrix elements
In the practical calculation of the Green function matrix el-
ements, we evaluate the state vector

G(E)|j >= lim
N→∞

NX
n=0

1

wn
Cn(E)φn(H)|j > (27)

for basis vectors |j > representing the Hamiltonian. Since the
coefficients Cn(E) are universal functions, the central part
of the calculation is the evaluation of the vector φn(H)|j >.
This can be performed by successive operations of the Hamil-
tonian H according to the recursive formula (3). It is notable
that we obtain not only the diagonal elements, but also the
off-diagonal elements of the Green function by this proce-
dure. The infinite summation in Eq. (27) must be truncated
at some finite order N , and it determines the resolution of
the whole energy spectrum through the energy separation
of the nodes for φN (E). Thus the energy resolution can be
controlled explicitly.

In this method, we can also evaluate the product of the
Green function and other quantum operator A such as
< i| · · ·G(E)AG(E)|j >, by choosing the initial state |j > in
Eq. (27) as |j′ >= AG(E)|j > and repeating the procedure
described above. Thus we can extend the present scheme to
the calculation of various physical properties.

3.2 DOS and Integrated DOS
The densities of states (DOS) is evaluated by taking the trace
of the Green function, and it is given by,

n(E) =

∞X
n=0

W (E)

wn
φn(E)

NX
j=1

< j|φn(H)|j >, (28)

where N is the total number of basis vectors. The integrated
DOS N(Ẽ) is obtained by integrating the above equation as,

N(E) =
∞X

n=0

Z E

−∞

W (x)

wn
φn(x)dx

×
NX

j=1

< j|φn(H)|j > . (29)

The integration involved in the above expression is readily
performed analytically by using Rodrigues’ formula (12) and
(16) for the case of the Hermite polynomial,

N(E) = N

�
1

2
+

1√
π
Erf

�
E√
2π

��

−
∞X

n=1

1

n!
√
2π
e−

E2
2 Hn−1(E)

NX
j=1

< j|Hn(H)|j >,

(30)

and for that of the Jacobi polynomials,

N(E) = N
B 1+E

2
(α+ 1, β + 1)

B(α+ 1, β + 1)

−
∞X

n=1

1

2nw
(α,β)
n

(1− E)(α+1)(1 + E)(β+1)

×P (α+1,β+1)
n−1 (E)

NX
j=1

< j|P (α,β)
n (H)|j >, (31)

where Bx(α+ 1, β + 1) is the incomplete beta function.

Thus the integrated DOS N(E) is obtained without further
effort in our scheme. Note that it is conserved to the num-
ber of eigenvalues at the upper edge of the domain in which
polynomials are defined, even though the infinite summation
is truncated at any order in Eqs. (30) and (31).

3.3 Eigenvectors
We can also evaluate the eigenvector |En > corresponding to
an eigenvalue En in our method. Let us consider a operation,

NX
n=0

W (En)

wn
φn(En)φn(H)|j >, (32)

where |j > is an arbitrary state vector. The resultant vector
becomes proportional to the eigenvector |En >, when the ex-
pansion order N is taken high enough that each eigenvalue
can be resolved.

4. Application

To demonstrate the efficiency of the scheme, we apply it to
square lattice systems in two dimension. A tight-binding
Hamiltonian is employed in which only the nearest neighbor
interactions are taken into account with the periodic bound-
ary condition. The Green function is expanded by the Leg-
endre polynomial {Pn(x)}.

Firstly, the method is applied to the 1000× 1000 square lat-
tice. In order to obtain a smoothed Green function which
approximates that for the infinite crystalline system, we trun-
cated the expansion at much lower order (N = 2000) than
the number of the system size N , Figure 1 shows the cal-
culated diagonal element of the Green function (solid line)
for the real part (energy is in unit of the nearest neighbor
hopping integral). It is compared with the exact solution for
the infinite system (dashed line) in the same figure. The cal-
culated result well approximate the exact one, and we can
hardly distinguish them.

There the result is also compared with that of the recursion
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Fig. 1. Imaginary part of the Green function Gjj(E) calculated for the
1000� 1000 square lattice system in two dimension. The Legendre
polynomials are used in the calculation, and the expansion order is
2000. It is compared with the exact solution (dashed line) for the infi-
nite crystalline system, and with the calculated result by the recursion
method (dotted line) with the expansion order of 800.

method with the expansion order (i.e. the number of recur-
sive steps) of 800 (dotted line). The comparison is limited
to the range of [−4, 4], because the recursion method does
not work outside the energy band. Although the expansion
order is much lower than that used in the present scheme,
there already appears oscillation around the band edge. As
is well known, this spurious oscillation is due to the “over-
expansion” of the recursive basis orbitals beyond the cluster
boundary, which starts to occur around the expansion order
of 500 in the present system.

Also in our method, a very fine oscillation is seen to appear
at higher expansion orders. This oscillation, however, is not
a spurious one and reflects the discrete nature of the eigen-
values of the finite cluster.

In order to confirm this point, we have calculated the DOS
of a much smaller system of 4 × 4 square lattice with the
expansion order of 1000. The result is plotted in Fig. 2 and
compared to the exact result of

Fig. 2. DOS calculated for the 4�4 square lattice system. The Legendre
polynomials are used in the calculation, and the expansion order is
1000.

n(E) = δ(E + 4) + 4δ(E + 2)

+6δ(E) + 4δ(E − 2) + δ(E − 4). (33)

The calculated DOS reproduces the discrete structure of the
exact one (33) fairly well, and we can even identify each eigen-
value from the position of the peak.

Furthermore, the degeneracy of each eigenstate can be de-
termined by calculating the integrated DOS according to
Eq. (31). This is illustrated in Fig. 3, and we clearly see
that the integrated DOS consists of step functions and in-
creases discontinuously by integer number corresponding to
the degeneracy at each eigenvalue.

The corresponding eigenvector |En > can be also evaluated
from Eq. (32). In Fig. 4, we plot the root mean square of
error for the calculated eigenvector at E = −4 as a function
of expansion order. It decreases monotonically as increasing
the expansion order, because the dominant part of the error
originates from the contamination of other eigenvectors due
to the truncation of the expansion. We can reduced it to a
few percent by conducting the summation up to the order of
ten times of a system size N .

These calculations show that the present scheme can be used
even when the DOS has discrete spectrum or singular points,
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Fig. 3. Integrated DOS calculated for the 4 � 4 square lattice system.
The Legendre polynomials are used in the calculation, and the ex-
pansion order is 1000.

Fig. 4. Root mean square of error for the calculated eigenvector at
E = �4 as a function of expansion order.
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and will be particularly useful to investigate systems with
localized states.

5. Summary

In summary, we have introduced a general scheme for calcu-
lating the Green function on the basis of polynomial expan-
sion technique. The scheme has several advantages. It is pos-
sible to calculate both the diagonal and off-diagonal elements
of the Green function, and also their products with other
quantum operators. The energy resolution of the spectrum
can be controlled explicitly by the expansion order. The inte-
grated density of states, eigenvalues, and eigenvectors can be
also obtained in the same algorithm. We applied the scheme
to the simple square lattice systems, and showed that it can
evaluate the Green function with sufficient accuracy, even
though the system has discrete eigenstates.
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