1. まえがき

鈍頭物体近傍後流の流れ構造の解明は、新研究の推進を示す方向流を伴い、その非定常性および三次元性から困難な問題として残されている。円柱などの柱状後流体のスパン方向の不安定性や湍面効果が強力に週回される(1)、平行2円柱や2角柱後流の非定常問題も取り組まれている(2)。一方、三次元物体まわりの流れとしておもに軸対称物体についての研究が多く、球あるいは円板後流に関し、その放出モードや周波数へのレイノルズ数効果や近傍後流の組織構造が調べられている(3)～(6)。

本研究は、トーラス体を流れに垂直および検斜して配置した場合の流れの解明を目的とするものである。流れは球に近い形をなす同型一体構造を有するものである。複雑形状流れの基本要素の一つとして重要である。著者らこれまでに、後流モードの異なる2種類のトーラス体を用い、風洞実験により流れを調べてきた(7)。本報告では、後流放散内の変動速度場を測定し、放出周波数の検斜角による変化を調べ、そして、分布によって、トーラス体に作用する抗力と揚力を測定する。

2. 実験装置と実験方法

直径比D/d = 3の断面直径d = 25 mmのトーラス体を、8本のスレッド（直径3 mm）を用いて風洞実験部に取り、風洞実験を行った。収縮開出口面積は400 × 400 mmで、トーラス体の流れ方向位置は、収縮口より400 mmである。測定部の上下2間に間隔400 mmの平行端板を設け、水平方向には開放している。トーラス体の傾斜角θとレシプロスの2区画を設けてある。内で約15°と45°で図1に示すように、境界は流れ方向のx軸、これに垂直なy軸とz軸、すなわち、流れる主動方向をx軸、流れに垂直なy軸と流れに平行なz軸とする。トーラス体の角度θはx軸まわりに行い、このためx・y面は流れの対称面となる。傾斜角θは円環中央面が流れと垂直になる場所をθ0として定義し、0° ≤ θ ≤ 90°の範囲で変化させた。主流速度はU0で示し、断面直径に基づくレイノルズ数をRa = 2.5 × 10^5 (U0d/ν0) = 30 m/sで測定した。

定温度型熱線速度計を1形プローブ（φ 5 mm × 1 mm）を使用した速度測定では、熱線方向にx軸、流れ方向にy軸、流れの対称面上で行われているので、測定される速度はy方向成分となる。速度測定はRa = 3 × 10^6で行った。

力計計は、トーラス体支持部と上下2カ所の装置固定部との間に挿入され、それ自体トーラス体と一体で回転する必要がある。本研究では力計計を新たに作成(8)、一体設計する。力計計初号機としては直交2軸方向力の測定を可能とし、検出は、片側2ユニット、上下2組の要素上に貼付けられた歪みゲージ（1ユニット4枚）を用い、最大読み取り力3 Nとして設定した。検定では既知の力をx軸方向に作用させ、実験時に同様に分力計を回転させながら各ユニットの歪み量を測定した。図2に検定結果を示す。

3. 実験結果と考察

流れ方向平均速度成分と変動速度のrms. 値の分布を、θ = 0°の場合は図3に、θ + 15°、45°の場合は図4にそれぞれ示す。θ = 0°では流れは基底状態となるので、軸より片側のみの結果を示す。トーラス体後流下には局所的な不均一領域が形成されるが、x > 0 外側ではほぼ直線した後流速度分布に近づく。この距離は、トーラス体外周の基底流として0.5倍で、円板後流のはく離流の流れ方向距離が2.5倍であることのと同程度である。

一方、トーラス体を傾斜させた場合には、トーラス体の内側を通過する流れは傾斜角ともに変化し、θ = 80°では観察されないと述べる。流れが傾斜した円筒(θ = 0°)の下流にかなりの幅の広い減速領域が形成され、θ = 15°と45°では下流までこの領域がみられ、流れの幅が局所的に大きくになっている。θ = 80°では、この点でも大きく変化しており、x軸に関し非対称な配置であるにも関わらず、平均、変動流分布ともにほぼ対称な分布となり、後流の幅が大幅に大きくなり、この現象は大気変動解、解明し難くなる非対称な流れであり、今後、マルチ熱線プローブを用いた三次元速度測定を行っていく予定である。

図5は、トーラス体から放出される流れの放出周波数の傾斜角による変化を示す。ここで、周波数はSt = f/ω ω = 0 付近について表している。θ = 0°の場合、St は約0.15であり、本実験条件と同じ間隔比をもつ穴あき円板での0.063とは大きく異なる。また、配置の2区画の傾斜角θ0とθ1の接続の角度θ0は45°の範囲では、θの増加とともにSt が大きくなってい

Fig. 1 Flow field and coordinate system

日本機械学会東海支部岐阜地区講演会講演論文集(‘01・9・15) No013-2

180
Fig. 2 Calibration curve of the two-component force sensor

Fig. 3 Profiles of mean and r.m.s. components of u

Fig. 4 Profiles of mean and r.m.s. components of u. U at (a) $\theta = 15^\circ$, (b) 45°, (c) 80° and u' at (d) $\theta = 15^\circ$, (e) 45°, (f) 80°

Fig. 5 Variation of the Strouhal number with an attack angle

Fig. 6 Drag and lift coefficients

参考文献
(7) Inoue, Y. et al., Exp. Fluids, 26 (1999), 197.