地盤工学会基準「JGS T 211 土懸濁液のpH試験方法」、「JGS T 221 土の強熱減量試験方法」、「JGS T 241 土の水溶性成分試験方法」、「JGS T 251 粘土質物判定のための試料調整方法」の一部改正案について

地盤工学会基準部

1. まえがき

標記の試験方法に関する地盤工学会基準（以下、基準という）は、1990年の改正以降、内容を変更することなく現在に至っている。今般、関連する規格や基準の新規定・改正、化学試験機器の急速な進歩、その他軽微な変更事由により見直しを必要とする事例が生じた。基準部、土質試験基準検討委員会、および関連する小委員会（化学試験小委員会）では見直しの作業を進め、改正案をまとめたもので、ここに提案する。

上記の4試験方法のうち、「粘土質物判定のための試料調製方法」と「土の強熱減量試験方法」は比較的軽微な改正であり、変更点のみを対比表で示している。「土懸濁液のpH試験方法」と「土の水溶性成分試験方法」は変更点が多く、対比表のみでは理解しにくいため、その全文を提示している。

ここに公表する改正案についてのご意見は、書面にて1998年3月31日までに地盤工学会基準部宛に提出していただきたい。関係委員会および基準部では提出されたご意見をもとに検討を進め、最終的な改正内容を理事会において決定する。

2. 基準改正の経緯と概要

2.1 土懸濁液のpH試験方法

水溶性のpHを測定する方法や原理は、この数十年間で変化していない。現行の基準である「土のpH試験」の方法についても、原理は全く変わることはない。pHと電気伝導度は、土の化学的性質の観点を知る上で重要なものであり、両者の関係を把握するために、土と懸濁状態の土を対象として測定した値であり、土自体のpHではない。このため、現行の名称を「土懸濁液のpH試験方法」と変更した。

なお、懸濁液のpHの測定値に影響を受ける試験を行い、懸濁液のpH値測定に影響を及ぼす条件を示すため、懸濁液のpH測定の基準に報告されている。

2.2 土の強熱減量試験方法

土中に含まれる塩素物質や有機物の概略量を知る試験として有効で利用者も多い。このため、JIS化に向けた試験方法案も提案されている。本基準案もJISと同等の内容を基準として提案するもので、加熱操作の再現性向上と利便性をはかるため電気マット炉を使用する方法で統一した。なお、新旧対比表は次のページに掲載している。

2.3 土の水溶性成分試験方法

現行の基準では、土に含まれる水溶性成分のうち、塩素イオン、硫酸イオン、および水溶性成分の全質量を測定する。土の水溶性成分は、塩化物、マグネシウム、カルシウム、カリウムが塩化物や硫酸塩のどちらか存在している。水溶性成分が土の物理的・力学的性質に及ぼす影響を把握するために、上記主要水溶成分の測定が有効となる。また、現行基準に採用されている試験方法は古典的な重量分析法と容量分析法に基づく方法であり、すでに当方の機関においては、土壌の水溶性成分を分析機器により、迅速かつ簡便に測定している状況にある。そこで、新規基準案では、①上の水溶性成分の種類を明らかにする、②機器分析法を全面的に採用する、との観点から基準を改正した。なお、公文案（全文）は76ページより掲載している。

2.4 粘土質物判定のための試料調製方法

誤字等を以下のように修正した。
地盤工学会基準案

土懸濁液のpH試験方法

Test Method for pH of Suspended Soils

1. 総則

1.1 試験の目的
この試験は、土と接した水のpHを求めることを目的とする。

1.2 適用範囲
粒径10mm以上の土粒子を取り除いた土を対象とする。

1.3 用語の定義
土懸濁液のpHとは、土粒子を機能的にも懸濁させた水の中に存在する水素イオンのモル濃度[H⁺](mol/l)の逆数を、常用対数で表したものをいう。

【付帯条項】
1. 本基準と部分的に異なる方法を用いた場合には、その内容を報告事項に明記しなければならない。

<table>
<thead>
<tr>
<th>項目</th>
<th>現行基準</th>
<th>改正案</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 用語の定義</td>
<td>700〜800℃に強熱したとき</td>
<td>750±50℃に強熱したとき</td>
<td>JIS規格の表記に合わせた。</td>
</tr>
<tr>
<td>2. 試験用具(2)</td>
<td>試料を700〜800℃で強熱できるもの</td>
<td>電気マッフル炉1000℃以上に加熱可能なもの</td>
<td>JIS規格の他材料の強熱減量試験方法との整合を図り、電気マッフル炉のみを用いた。</td>
</tr>
<tr>
<td>2. 試験用具(4)</td>
<td>容量25〜50mlのもの</td>
<td>容量30〜50mlのもの</td>
<td>JIS R 1301 つぼの容量に準拠した。</td>
</tr>
<tr>
<td>2. 試験用具(7)</td>
<td>備えつき白金線</td>
<td>「備えつき白金線」削除</td>
<td>2. 試験用具(2)の理由と同じ。</td>
</tr>
<tr>
<td>3. 試験(5)</td>
<td>約50ml</td>
<td>50ml/30ml</td>
<td>2. 試験用具(4)の理由と同じ。</td>
</tr>
<tr>
<td>4. 試験方法</td>
<td>減量を用いたもの</td>
<td>「6」質量が増加した場合は、増加する前の質量を一定質量とする。」を追加</td>
<td>JIS規格の他材料の強熱減量試験方法との整合を図り、一定質量になることを確認することを義務付けた。</td>
</tr>
<tr>
<td>5. 試験結果の整理</td>
<td>m₀: 試料</td>
<td>m₀: 炉乾燥試料</td>
<td>2. 試験用具(2)の理由と同じ。</td>
</tr>
<tr>
<td>6. 報告事項(1)</td>
<td>強熱方法と強熱時間</td>
<td>強熱時間</td>
<td>2. 試験用具(2)の理由と同じ。</td>
</tr>
</tbody>
</table>

JGS T 211-199X

1.2 高有機質土にも適用できる。
1.3 pHは塩酸、アルカリ性の度合いを示し、次式で定義される。

\[
pH = \log \left(\frac{1}{[H^+]}) \right) = -\log [H^+] \]

2. 試験用具および試薬

2.1 試験用具
(1) ガラス電極式pH計 最小読み値0.1以下のもの。
(2) はかり 感量0.1g程度のもの。
(3) ピーナー 容量100〜500mlのもの。
(4) その他 ピンセット、洗浄槽、撹拌棒、ろ紙、温度計。

2.2 試薬
(1) pH標準液
(2) 水 蒸留水またはイオン交換水。
【付帯条項】

2.1
(1) pH 計の例を図—1 に示す。
(3) a. 試料を攪拌棒で懸濁させ、3 分以上、3 時間以内静置したものを測定用の試料液とする。

図—1 pH 計の例

(2) 電極に付着した水滴を単紙で吸い取ったのち、中性りん酸塩 pH 標準液に電極を浸漬し、pH 計の指示値が、表—2 に示す温度対応した pH に一致するように、pH 計を調整する。

表—2 pH 標準液の各温度における pH

<table>
<thead>
<tr>
<th>温度 (℃)</th>
<th>フタル酸塩</th>
<th>中性りん酸塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.00</td>
<td>6.98</td>
</tr>
<tr>
<td>1</td>
<td>4.01</td>
<td>6.95</td>
</tr>
<tr>
<td>10</td>
<td>4.00</td>
<td>6.92</td>
</tr>
<tr>
<td>15</td>
<td>4.00</td>
<td>6.90</td>
</tr>
<tr>
<td>20</td>
<td>4.00</td>
<td>6.88</td>
</tr>
<tr>
<td>25</td>
<td>4.01</td>
<td>6.86</td>
</tr>
<tr>
<td>30</td>
<td>4.02</td>
<td>6.85</td>
</tr>
<tr>
<td>35</td>
<td>4.02</td>
<td>6.84</td>
</tr>
<tr>
<td>40</td>
<td>4.04</td>
<td>6.84</td>
</tr>
</tbody>
</table>

2.2
(1) pH 標準液には、しょう酸塩、フタル酸塩、中性りん酸塩、ほう酸塩、炭酸塩がある。通常、中性りん酸塩とフタル酸塩を用いる。

3. 試 料
(1) JGS T 101 「土質試験のための乱した土の試料調製方法」4.1 非乾燥法によって得られたものを用いる。
(2) 粒径 10 mm 以上の土粒子をビンセット等で取り除いたものを試料とする。
(3) 粒径を考慮して適量の試料をビーカーに入れ、試料の乾燥質量に対する水（試料中の水を含む）の質量比が 5 になるように水を加える。
(4) 試料を攪拌棒で懸濁させ、3 分以上、3 時間以内静置したものを測定用の試料液とする。

【付帯条項】
(1) 固結した土は、ときほぐしてから用いる。
(3) a. 試料の量は粗粋分が多い土ほど多めに取る。その目安とビーカーの容量を表—1 に示す。
b. 試料の含水比をあらかじめ測定し、試料の含水比によっても試料の状態が、懸濁液の状態に変わる場合は、さらに水を加える。

4. 試験方法
4.1 pH 計の调整
(1) あらかじめ通電していた pH 計の電極を、水に10分間以上浸漬しておく。
(2) 電極に付着した水滴を単紙で吸い取ったのち、中性りん酸塩 pH 標準液に電極を浸漬し、pH 計の指示値が、表—2 に示す温度対応した pH に一致するように、pH 計を調整する。

表—3 pH 標準液の各温度における pH

<table>
<thead>
<tr>
<th>温度 (℃)</th>
<th>しょう酸塩</th>
<th>ほう酸塩</th>
<th>炭酸塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.67</td>
<td>9.46</td>
<td>10.22</td>
</tr>
<tr>
<td>5</td>
<td>1.67</td>
<td>9.40</td>
<td>10.24</td>
</tr>
<tr>
<td>10</td>
<td>1.67</td>
<td>9.33</td>
<td>10.18</td>
</tr>
<tr>
<td>15</td>
<td>1.67</td>
<td>9.28</td>
<td>10.12</td>
</tr>
<tr>
<td>20</td>
<td>1.68</td>
<td>9.22</td>
<td>10.06</td>
</tr>
<tr>
<td>25</td>
<td>1.68</td>
<td>9.18</td>
<td>10.01</td>
</tr>
<tr>
<td>30</td>
<td>1.68</td>
<td>9.14</td>
<td>9.97</td>
</tr>
<tr>
<td>35</td>
<td>1.69</td>
<td>9.10</td>
<td>9.92</td>
</tr>
<tr>
<td>40</td>
<td>1.69</td>
<td>9.07</td>
<td>9.89</td>
</tr>
</tbody>
</table>
<p>地盤工学会基準案</p>

土の水溶性成分試験方法

Test Method for Water-Soluble Components of Soils

1. 総則

1.1 試験の目的
この試験は、土の水溶性成分のうち、ナトリウム、カリウム、カルシウム、マグネシウム、塩化物および硫酸塩の含有量を求めることを目的とする。

1.2 適用範囲
粒径約10mm以上の土粒子を取り除いた土を対象とする。

1.3 用語の定義
本基準における水溶性成分の含有量とは、土を水に浸して、溶出した各成分の質量を土の乾燥質量に対する百分率で表したものをいう。

【付則条項】
1. 本基準と部分的に異なる方法を用いた場合には、その内容を報告書に明記しなければならない。

2. 試験方法の種類

試験方法は、水溶性ナトリウム・カリウム・カルシウム・マグネシウム含有量試験および塩化物・硫酸塩含有量試験とする。

【付則条項】
2. 3.2 溶出液の調製で得られた溶出液を用いてそれぞれの試験を行う。

3. 溶出液の調製

3.1 調製用具
(1) 振とう槽
(2) 遠心分離機
(3) ろ過装置
(4) ろ紙 孔径0.45μmのメンブランフィルターまたはこれに等価のろ紙
(5) 振とう瓶 容量1lで樹脂製広口のもの
(6) 試験瓶 容量500mlのもの
(7) メスシリンダー 容量500mlのもの
(8) ピンセット
(9) ばかり 感量0.1gのもの
(10) 水 蒸留水またはイオン交換水

3.2 調製方法

(1) 自然含水比状態の土をJGS T 101「土質試験のための乱した土の試料調製方法」の4.1 非乾燥法によって得られたものを用いる。
(2) 粒径約10mm以上の土粒子をピンセットで取り除いたものを試料とする。試料の一部を用いて含水比w(%)を求める。
(3) 乾燥個高約50gに相当する湿潤試料m₀(g)を計取り、振とう槽に入れる。
(4) 水Vₕ=500mlを振とう槽に加える。
(5) 振とう機（あらかじめ振とう回数を毎分約200回、振とう幅を4cm以上5cm以下に調整したもの）を用い、常温（おおむね20℃）、常圧で6時間連続して振とうする。
(6) 振とう後、懸濁液を10〜30分程度静置後、毎分30000回転で20分間遠心分離した後の上澄み液を孔径0.45μmの濾過網を用いてろ過する。
μmのメスプランフィルターまたはこれと同等のろ紙を用いてろ過する。
(7) ろ液を溶出液とし、試験液に入れ保存する。
(8) 溶出液の換算係数f (g/ml) を次式で算定する。
\[f = \frac{m_1}{V_1 + V_2} \]
ただし、
\[m_1 = \frac{m_v}{1 + (w/100)} \]
\[V_2 = \frac{m_{w} - m_{d}}{\rho_v} \]
ここに、
\[V_1 : \text{加えた水量 (500 ml)} \]
\[V_2 : \text{試料に含まれる水の量 (ml)} \]
\[m_v : \text{試料の湿潤質量 (g)} \]
\[m_d : \text{試料の乾燥質質量 (g)} \]
\[w : \text{試料の含水比 (％)} \]
\[\rho_v : \text{水の密度 (g/cm\(^3\))} \]

4. 水溶性ナトリウム・カリウム・カルシウム・マグネシウム含有量試験

3.2で調製した溶出液に含まれる各元素の量を、JIS K 0102 「工業排水試験方法」によって規定されているフレーム原子吸光光を用いて測定する。

4.1 試験用具
(1) フレーム原子吸光分析装置
(2) ナトリウム・カリウム・カルシウム・マグネシウム中空陰極ランプ
(3) ガス調整器メスフラスコ (100 ml, 250 ml, 1 000 ml)、ビーカー (50 ml, 100 ml)、ホールビペット (1〜25 ml)

4.2 試薬
(1) ナトリウム標準液 (10 mgNa/ml)
(2) カリウム標準液 (10 mgK/l)
(3) カルシウム標準液 (20 mgCa/l)
(4) マグネシウム標準液 (2 mgMg/l)
(5) ランタン溶液 (50 g/l)
(6) 6 mol/l 塩酸
(7) 水 焼結水またはイオン交換水

4.3 検量線の作成
(1) 各元素の標準液1〜20 ml をメスフラスコ100 ml に段階的にとり、6 mol/l 塩酸2 ml を加えた後、水を標線まで加える。
(2) この検量線とアセチレン・空気フレーム中に曝露し、各元素の測定波長における指示値(吸光度またはその比例値)を読み取る。ただし、カルシウムとマグネシウムについては、(1)の溶液10 ml を乾いたビーカーにとり、ランタン溶液 (50 g/l) 1 ml を加えた溶液を用いる。
(3) 水についても同様な操作を行い、得られた指示値を空試験値とする。
(4) 試薬について(1)〜(3)の操作を行い、濃度と指示値との関係線(検量線)を作成する。

4.4 溶出液の測定
(1) 3.2で調製した溶出液の適量 V(ml)をメスフラスコ100 ml にとり、6 mol/l 塩酸2 ml を加えた後、水を標線まで加える。
(2) この溶液をアセチレン・空気フレーム中に曝露し、各元素の測定波長における指示値(吸光度またはその比例値)を読み取る。ただし、カルシウムとマグネシウムについては、(1)の溶液10 ml を乾いたビーカーにとり、ランタン溶液 (50 g/l) 1 ml を加えた溶液を用いる。
(3) 各元素について(1)〜(2)の操作を行い、濃度と指示値との関係線(検量線)を作成する。検量線の作成は試料の測定時に行う。

4.5 試験結果の整理
水溶性ナトリウム・カリウム・カルシウム・マグネシウムの含有量 S (%) は次式で算出する。
\[S = \frac{C}{100V} \]
ここに、
\[C : \text{検量線から求めた元素濃度 (mg/l)} \]
\[V : \text{溶出液の採取量 (ml)} \]
\[f : 3.2 で求めた溶出液の換算係数 (g/ml) \]

4.6 報告事項
試験結果について次の事項を報告する。
(1) 溶出液の調製に用いた試料の湿潤質量および含水比
(2) 水溶性ナトリウム・カリウム・カルシウム・マグネシウム含有量
(3) 本基準と部分的に異なる方法を用いた場合は、その内容
(4) その他特記すべき事項

【付帯条件】

4.2
(1)〜(4) 各元素について、市販の標準液 (1 000 mg/l) の適当量を水で希釈して100〜250 mg/l の標準液100 ml を作成する。さらにその溶液の適当量をメスフラスコ250 ml にとり、6 mol/l 塩酸5 ml を加えた後、水を標線まで加える。
(5) 酸化ランタン (M) 29 g を溶液ずつ6 mol/l 塩酸500 ml に加えて溶かす。

4.3
(2) 各元素の測定波長は次のとおりとする。
Na 589.0 nm, K 766.5 nm, Ca 422.7 nm, Mg 285.2 nm

4.4
(2) カルシウムの定量は、リノ酸ソーダ、硫酸ソーダ、アルカリソーダなどに妨害される。またアルカリソーダは、少量 (2 mg/l) でもマグネシウムの定量に妨害する。これらの妨害は、ランタン (50 g/l) を添加することによって抑制することができる。

5. 塩化物・硫酸塩含有量試験

3.2で調製した溶出液に含まれる塩化物イオンと硫酸イオンの量を、JIS K 0102「工業排水試験方法」によって規定されているイオンクロマトグラフ法を用いて測定する。

5.1 試験用具
(1) イオンクロマトグラフ
(2) シリンジ 1〜10 ml
(3) ガス調整器メスフラスコ (100 ml, 250 ml, 1 000 ml)、ホールビペット (1〜25 ml)

5.2 試薬
(1) 溶液水 使用する装置および分離カラムで指定された

January, 1998
5.3 検量値の作成
(1) 各イオンの標準液1〜20 mlをメスフラスコ100 mlに従設的にとり、水を標線まで加える。
(2) イオンクロマトグラフを作動できる状態にし、分離カラムに溶離液を一定の流量（例えば、1〜2 ml/min）で流しておく。除去カラムを必要とする装置では除去液を一定の流量で流しておく。
(3) 標準液の一定量（例えば0.05〜0.2 mlの一定量）をシリンジを用いてイオンクロマトグラフの分離カラムに注入し、一定の流量（例えば、1〜2 ml/min）の溶離液で溶離し、クロマトグラフを記録する。
(4) クロマトグラフ上の塩化物イオンまたは硫酸イオンに相当するピークについて、指示値（ピーク高さまたはピーク面積）を読み取る。
(5) 水についても同様な操作を行い、得られた指示値を空試験値とする。
(6) 各イオンについて、濃度と指示値との関係線（検量線）を作成する。検量線の作成は試料の測定時に行う。

5.4 溶出液の測定
(1) 3.2で調製した溶出液の適量V(ml)をメスフラスコ100 mlにとり、水を標線まで加える。
(2) この溶出液について、5.3の(2)〜(4)の操作を行い、得られた指示値（空試験値を補正した値）とあらかじめ作成した検量線から塩化物イオンまたは硫酸イオンの濃度C (mg/l) を求める。

5.5 試験結果の整理
塩化物・硫酸塩の含有量S (%)を次式で算出する。

\[S = \frac{C}{100 f V} \]

ここに、

\(C \): 検量線から求めた塩化物イオンまたは硫酸イオンの濃度 (mg/l)
\(V \): 溶出液の採取量 (ml)
\(f \): 3.2で求めた溶出液の換算係数 (g/ml)

5.6 報告事項
試験結果について次の事項を報告する。
(1) 溶出液の調製に用いた試料の湿潤質量および含水比
(2) 塩化物・硫酸塩含有量
(3) 本基準と部分的に異なる方法を用いた場合は、その内容
(4) その他特記すべき事項

【付帯条項】

5.2
(3)(4) 各イオンについて、市販の標準液（1 000 mg/l）を水で希釈する。

5.3
(1) 塩化物イオンと硫酸イオンを同時に測定する場合には、混合標準液（10 mgCl⁻/l, 100 mgSO₄²⁻/l）を用いる。

5.4
(1) 溶出液の電気伝導度が10 mS/m（25℃）以上の場合には、電気伝導率が10 mS/m以下になるように、水で一定の割合に薄める。