ELM（エルム）

プラズマがHモードに入った状態で、プラズマの表面近く（周辺部）の輸送特性の改善によって急激になった圧力勾配が安定して保たせられ、プラズマの粒子およびエネルギーがバルス的に放出される現象をいう。Edge Localized Modeの略。核融合炉の設計では、プラズマからの急激なエネルギー放出が装置に与える影響が大きな問題として議論されている。プラズマ実験でのHモードへの遷移は、水素原子からのパルマーα線（Hα線）の放射量の減少によって判断する場合が多いが、ELMはHα線信号中では、通常連続するスパイクとして観測される。

ベデスタル（Pedestal）

プラズマの数多くの閉じ込め改善モードのなかで、狭い意味で通常Hモードと呼ばれられているものは、特にプラズマの周辺部で閉じ込めが改善される、境界のすぐ内側の密度や温度が局部的に上昇する現象を指している。トーラスプラズマの密度・温度分布は、一般的には中心部から境界に向かってだんだんに減少するが、Hモードに特微的な分布は境界で段差を持つ形となるため、銅鉄や柱状の台座を意味するpedestalという語を使って境界近くの段構造の部分を呼んでいる。

エルゴディック層（Ergodic Layer）

プラズマのトーラス閉じ込めは、磁気面と呼ばれる磁力線の集合体で形成されたドーナツ型のチューブを、重ねて入れ子状にした磁場構造を基本とされている。それぞれのチューブは磁力線によって理想的な「曲面」が構成されていることが前提となっているが、本来のトーラス磁場構造を狂ったような磁場要素を追加すると、磁力線が曲線上から不規則的にずれる（エルゴディックな）動きをするようになるため、磁気面が「面」から厚みを持った「層」に変形する。ヘルカル型トーラスの磁気面は、トーラスの表面近傍では大なり小なりエルゴディックな構造を持っている。

輸送障壁（Transport Barrier）

トーラス閉じ込めにおいて、磁気面を構成する粒子やエネルギーの輸送量（流束）は、プラズマの密度と温度の勾配と一定の比例関係にある。例えば磁場強度を増すことにによって閉じ込めが良くなるような場合は、分布が全体的に急勾配となり密度・温度が上昇する。それに対して、特殊な条件でのモードの工夫などによって全く新しく閉じ込め特性の改善が成功したような場合は、プラズマの全域ではなく、特定のプラズマ小半径に近接して輸送が改善されることが多い、その位置に輸送に対する障壁ができ、という意味でこの言葉を用いる。局所的に勾配が急になるために、そこで密度や温度の分布に段差が形成される。プラズマ境界のすぐ内側に輸送障壁が生成される場合がHモードである。

準等磁場概念（Quasi-Isodynamic Concept）

ヘルカル型トーラスプラズマ閉じ込め磁場の最適化に関する一つの考え方で、磁場の対称性、すなわちトライダル対称（軸対称）、ヘルカル対称、ポロイダル対称などの対称性の回復を特に意識せず、閉じ込め磁場分布を調整することにより、磁場強度の空間変化を低減（準等磁場）し、磁場勾配による磁気面と粒子軌道とのずれを最小にしようとすることで、W7-XやHeliotron Jの磁場設計に適用されている考え方である。この様にして考えられる磁場配置が、準ポロイダル対称性の観点からの最適化配置に近いことは興味深い。

ヘリック装置（Heliac）

ヘルカル型プラズマ閉じ込め装置の一種で立体磁気軸系に属し、プリンストンプラズマ物理研究所にいたS. Yoshikawaにより提案された。磁場コイルは一本の大きな円形コイルと、それに知恵の輪状に交差して多個のトライダルコイルで構成される。トライダルコイルは円形コイルに対し螺旋状に配置され、そのため磁気軸も螺旋状となり、電流型の磁気面を形成する。コイル間の電流比を変えることにより、回転変換角の分布、磁気井戸の深さを変えることができる。

ポロイダル回転に対する粘性（Viscosity for Poloidal Rotation）

トーラスプラズマでは、径方向電場が存在するとE×Bドリフトによってプラズマの回転が発生する。強いトライダル磁場が周辺を形成するポロイダル回転は、トーラス内部で磁場強度が増すために、粒子間衝突に基づくブレーキ力を受けることになる。この回転に対する減衰効果を粘性という物理量で表現する。Hモードの遷移現象において、プラズマの流れ（回転）とその径方向の勾配は重要な要素と考えられており、磁場配置の議論においても、回転に対する粘性の大小の比較がしばしば議論される。

Reynolds Stress

流体力学の乱流の問題において議論される、ゆらぎ量から発生する応力成分、流体力学方程式の非線形成分から直接的に導かれる、ゆらぎ成分の2乗平均に比例する。トーラス閉じ込めの議論ではプラズマのポロイダル回転の駆動力として注目され、ブローポなどによるゆらぎの測定結果を用いて駆動力を定量的に評価する研究も行われている。

365

NII-Electronic Library Service
新古典論による非単極性電場 (Neo-Classical Non-Ambipolar Electric Field)

クーロン衝突を伴う完全電離プラズマ（ただし衝突を伴わない静的なプラズマ）の電磁力を横切る拡散過程の議論の中で、特にトーラス閉じ込めのように、閉じ込め領域内に磁場強度の変化のある場合を新古典的拡散と呼ぶ。この拡散過程は、ヘリカル装置のように軸対称性の無い磁場配位においては、電子とイオンで異なる流れを与え、その結果は径方向電場の値が強く依存する。閉じ込められたプラズマは定常的には準中性体から、電子とイオンの流体としての流れが一致することが必要となり、その条件を与える径方向電場の構造（分布）が生成されることがになる。

イオンルート（Ion Root）

ヘリカル閉じ込め装置では、電子とイオンとの拡散を考慮する条件として径方向電場が自発的に決定されるが、それぞれの粒子種の密度や温度によって、電場の軸性が正と負の両方の場合が発生する。大まかには密度が高く温度が低いプラズマでは径方向電場が負となり、密度を低めにした状態で電子密度を高くすると電場は正の値に変化する。負の電場が生成される状態をプラズマが逆に流れを伴う（逆の場合は電子ルート）プラズマルーティルの変動に伴う電場の変化の条件はbifurcationとも呼ばれ、物質の転相を含む類似した、プラザタメサに対する不連続な依存性を示す。

帯状流（Zonal flow）

核融合炉を目的とするプラズマ閉じ込め研究では、プラズマエネルギーが逆に流れの反対側の現象が大きい役割を担っているが、微小スケールの流乱構造を重ねて存在していると考えられている。中間的なスケールのプラズマの流れの構造をつくる、帯状流は乱流主体で、構造が維持されるため、高温プラズマ中では常に存在するものと考えられており、その構造が抵抗形に沿った流れであるが、隣接する流れ面では流れの向きが変化して径方向に流れの勾配が生成され、流れの勾配に乱流との関係は閉じ込め改善との関係で多くの研究が行われている。同様の観点から、乱流による輸送を評価する際には常に帯状流を含んだ議論が必要である。近年考えられるようになってきた。

小特集執筆者紹介

岡村 升一

1977年東京大学理系物理博士課程修了。名古屋大学プラズマ研究室に勤務し、マイラー・カスペル型RFC-XXを用いたプラズマ実験に従事する。その後核融合科学研究所に転居し、コンパクトヘリカル装置によるプラズマ閉じ込め研究を推進と現在に至る。主な研究分野は、ヘリカル系プラズマ閉じ込め実験と帯状流に焦点を当てたプラズマ閉じ込め技術の開発と。最近、流体と電子の相関性を含む研究に取り組んでいる。

高村 大祐

1988年東京大学原子力工学専攻博士課程修了。現在、日本原子力研究開発機構・核融合研究所開発部門・先進プラズマ研究開発ユニット・トカマク開発タスク・トリガー。国際トカマク開発・研究開発・開発グループ作業部門、JT-60での高パート・先進トカマク開発研究とトカマク開発研究等に従事。粒子2人で、趣味はサボテン栽培（30年目）、水彩画（これで結婚）、料理（和洋中）、サッカー（毎週末）、釣り（茨城の海）。

東井 和夫

核融合研究所大型ヘリカル研究部教授、名古屋大学工学研究科エネルギー工学専攻客員教授。工学博士。1972年名古屋大学工学研究科修士課程修了後、日本原子力研究所のJFT-2実験に参加、その後名古屋大学プラズマ研究所、九州大学応用力学研究所および核融合科学研究所においてトカマクプラズマの研究に従事。最近はCHSおよびLHD（核融合研究）のヘリカルプラズマにおけるMHDフラクタル研究の在籍プラズマとの比較研究、温度変化や花水栽培などの田舎でリフレッシュしています。

秋山 直志

2003年京都工業大学理工学研究科原子核工学専攻博士。現在、日本原子力研究開発機構核融合研究所大型ヘリカル研究部高圧プラズマ物理研究係助手。主な研究分野は、レーザーを用いたプラズマ計測（特に偏光計測）ですが、最近ヘリカル装置のH-modeに興味を持ち、研究を始めました。家族は京都に住む妻と娘1人（11歳）で、平日は軽い、週末は東京での生活で1週間ごとに娘の成長に喜び一方で、1週間で変化の少ない自分に反省することもしばしばです。

南 賢司

京都大学大学院理学研究科博士後期課程単位取得退学。その後、理学博士、現・核融合科学研究所大型ヘリカル研究部助手。CHS装置でトマソン放電計測装置を担当。専門はプラズマ物理、学生時代は、ミリ波、サブミリ波計測や高温帯電放電実験をやっていた。現在はプラズマ輸送をやっている。ながくお酒を飲むことに、いすふん、いろんなことを手がけてきたと思う、最近より山登りに出かけるが、本当に山に追い込まれているのだろう、うかげってている。図星だっただろう。