小特集
マルチスケールでのプラズマ・壁相互作用の理解の現状

Present Status of Studies on Plasma Wall Interaction in Multi-Scale

1. はじめに

坂本瑞樹
九州大学応用力学研究所
（原稿受付：2007年10月22日）

核燃料プラズマの長時間定常制御は核融合炉実現のための重要な課題である。この課題には、プラズマの閉じ込め・輸送、加熱・電流駆動などの炉心プラズマに関わる課題と、ダイバーパーの熱・粒子荷質、壁材料の損傷や損耗・再堆積などのプラズマ対向壁に関する課題があり、両者は核燃料プラズマを対向壁にとって、炉の運転をはなす重要な研究課題である。そして、この両輪を車軸のごとく結び付けているものがプラズマ・壁相互作用（PWI）に関する研究課題である。

例えば、炉心プラズマ性能の改善に関しては、ASDEXトカマクにおいて発見されたHモードの結果においても、いわゆる壁のコンディショニングがその達成に重要な役割を果たした。すなわち、炉心プラズマの性能向上のために、第一壁やダイバーパーというプラズマ対向壁での粒子取扱いを改善し、炉心プラズマと壁との間に位置する周辺プラズマの制御を高めることが必要となるわけである。この粒子取扱いの改善に、いわゆる壁排気（壁の水素吸収）が効果的である。長時間定常プラズマにおいては壁排気の問題と燃料を与えるトリチウムの炉内蓄積（トリチウムインベントリー）の問題があるため、核融合炉においては壁排気に依存しない粒子制御が必要である。このように核燃料プラズマの長時間定常制御のために、炉心プラズマに関する課題とプラズマ対向壁に関する課題の両立性が求められる。

炉心プラズマ内での現象も壁材料内での現象も、空間的、時間的に様々な特徴が長く存在しており、それらをマルチスケールな観点で研究していくことが将来の核燃料プラズマの定常制御にとって重要となる。プラズマおよび材料の内部での現象を理解するための枠組とも言えるのがPWIである。このPWIに起因する現象とその特微的な空間スケールについてはおそらく図1のよう示すことができる。PWI現象は、ナノスケールの材料の微細構造や堆積に関する現象から、数μmから数十μmの大きなダストの振る舞い、mmから数cm程度のノットスポット、数cmから1m程度の中性粒子の輸送、真空容器サイズの広がりを持つ粒子バランスや不純物輸送などに関わる現象まで、空間的には約10mにまで広がる。時間的にも10psオーダーの照射損傷から材料の寿命（年のオーダー）に至るまでの広がりを持つ、まさにPWI研究はマルチスケール現象を含んでいることがわかる。

本小特集では、第2章から第4章にかけて、このようなマルチスケールのPWI現象の空間的スケールに注目し、それぞれマクロスケール、ミクロスケール、ミクロスケールの観点からまとめられている。さらに第5章においては、炉心プラズマのマルチスケールシミュレーションの現状と、そのシミュレーションにプラズマ・壁相互作用までを考慮する取り組み、ならびに核融合材料におけるマルチスケールモデルデリングの現状がまとめられている。材料内部から炉心プラズマまでをマルチスケールの観点で総合的に理解する研究は端緒にいたしかったが、今回の小特集はこれらの研究の一助になることを期待している。

図1 プラズマ・壁相互作用の特徴的長さの概念図：A：材料微細構造、B：照射損傷、C：ダスト、D：ノットスポット、局所リサイクリング、E：不純物輸送、F：中性粒子輸送、G：巨視的粒子バランス。