Strongly Correlated Systems as Thermoelectric Materials

I. Terasaki, Department of Applied Physics, Waseda University

Various novel physical properties such as high temperature superconductivity have been discovered in strongly correlated systems where the band picture based on the one-electron approximation breaks down owing to the strong Coulomb repulsion. Recently, thermoelectric effects have attracted keen interest as a new property of such systems. In particular, materials with large thermopower and low resistivity have been studied for potential use as thermoelectric materials. This article briefly introduces electron correlation and thermoelectric phenomena, and reviews the thermoelectric properties of the Heusler compound Fe$_2$VAI and the layered cobalt oxide Na$_2$CoO$_4$.

Key words: thermoelectric effect, thermoelectrics, strongly correlated system, heavy fermion, Fe$_2$VAI, Na$_2$CoO$_4$

1. はじめに

固体中の電子は負の電荷をもつ荷電粒子であり、他の電子とクーロン斥力と及ぼし合っている。通常の金属性では、クーロン斥力は他の伝導電子に遮蔽されるため、電子はほとんど独立に運動していると考えてよい。この考え方は一電子近似と呼ばれ、バンド理論の基礎をなしている。ところが遷移金属化合物のように、局在性の強い3d軌道を電子が伝導する場合には、クーロン斥力は十分に遮蔽されず、電子は他の電子を避けながら相関して運動し、一電子近似は破綻する。このような現象を電子相関といい、電子相関の強い固体のことを強相関電子系と呼ぶ。特に、電子相関が強い極端では、伝導電子はクーロン斥力のために面歴できなくなり、局在スピンをなして系は磁性を示す。すなわち電子相関は磁性の源であり、磁気物質を支える基本概念として、量子力学の誕生当初から研究されてきた。

物質科学から見ると相関電子系の最大の魅力は、一電子近似が破綻しているために、バンド理論の予測を凌駕する物性が起こりうることであろう。その典型例が、1986年発見された銅酸化物の高温超伝導である（3）、その後、マンガン酸化物の磁場誘起金属－絶縁体転移（超巨大磁気抵抗効果）（4, 5）や、1次元伝導体の異常非線形光学効果（6, 7）などが発見され、さまざまな機能性材料で強相関効果が注目されている。

最近、新たな強相関効果として熱電現象が関心を集めている。数年前我々は、層状コバルト酸化物 Na$_2$CoO$_4$の高い熱電特性を偶然発見し（8）、その機構を強相関効果によって説明してきた（9-11）。また、我々が先に、Mahan と Soffa（12）は重い電子系と呼ばれる強相関電子系で高い熱電特性が期待できることを理論的に予言している。今後では、強相関電子のもつ熱電現象をスポットを、熱電変換材料への応用について平易に解説したい。なお、本稿と深く関連する小倉八重の記事が、2002年の本会誌に掲載されている。こちらも併せて参照された。

2. 熱電効果と熱電変換

まず、固体の熱電現象と熱電変換について簡単にふれておこう。固体の両端に温度差ΔTを印加すると、温度差に比例する電圧Vが発生する。この現象をゼーベック効果、温度差に比例する電圧を熱電力という。また、比例係数S=V/ΔTをゼーベック係数または熱電能という。熱電力の大きな物質は、温度差を与えると一種の電池のように振舞う。Fig.1に模式的に示すように、もし抵抗率が十分に低ければ、それらの物質に負荷を結線して実用的な電力を取り出すことができる。このように、ゼーベック効果を用いて熱電力を直接変換することを目指電発電という。また、ゼーベック効果の逆過程であるベルチ効果を用いれば、試料に電流を流すことによって、試料の一端から他端へ熱を発生することができる。これは熱電冷却またはベルチ冷却と呼ばれる。熱電発電と熱電冷却をあわせて熱電変換という。熱電変換に用いられる機能性材料を熱電変換材料という（13）。

Fig.1 Schematic picture of thermoelectric power generation.
どのような物質が熱電変換材料となりうるのであろうか。熱電発電の場合、熱電力は電池の起電力をに対応し、抵抗率 ρ は電池の内部抵抗に対応しているので、ゼーベック係数 S が大きく、抵抗率 ρ が小さいことが必要である。これらに加えて、試料に大きな温度差がつくためには、試料の熱伝導率 κ が低くなればならない。定量的には、性能指數 Z

$$Z = \frac{S^2}{\rho \kappa}$$

が大きい物質が熱電変換材料であり、絶対温度 T を乗じた無次元性能指數 ZT が変換効率の指標となる。

ZT の値は大きければ大きいほど良いが、$ZT > 1$ が一つの目安とされる。実用化されている熱電変換材料は、ほぼ $ZT = 1$ を満たしている。本稿では、表面の合成、電子物性に議論を絞る。そのとき重要なパラメータは Z から熱伝導率 κ を除いた量 S^2/ρ である。これは電力因子と呼ばれ、熱電変換材料から取り出す最大電力の指標である。

熱電変換材料とは、S が大きく、ρ と κ が小さい物質であるが、そのような物質は決して多くない。なぜなら、S, ρ, κ は、すべて伝導電子密度の関数であり、独立に制御できないからである。現在実用化されている熱電変換材料の一つである Bi$_2$Te$_3$ は 300 K で ZT = 1 を示す。その熱電パラメータは室温近傍で $\rho = 1～2$ mOhm cm, $S = 200～250 \mu V/K$, $\kappa = 15～20$ mW/cmK 程度である。この数値は、後から強相関電子系物質の値で記載に留めておいて欲しい。

3. 熱起電力の熱力学的意味

この節では、ゼーベック係数の表式を直観的に導くことから始める。熱起電力が電子比熱と深く関係していることを示そう。Fig. 2 のように、十分長い金属導体の温度差を与える、一方の端 1 の温度を T_1, 他方の端 2 の温度を T_2 とする ($T_1 > T_2$)。端 1 の電子は端 2 の電子よりも温度が高いため、運動エネルギーが大きい。したがって、温度差をつけた瞬間に電子は端 1 から 2 に向かって流れ始める。しかし電子は試料の外へ出ることができないので、電流密度は端 1 では小さく、端 2 では大きくなる。試料の中電場が発生する。この電場は、試料の両端に抵抗した温度差によって生じたもので、熱起電力の源である。

この電場に対応する静電ポテンシャルを V_{th} とおくと、定常状態では、系のポテンシャルエネルギーと運動エネルギーの和は一定で等しいはずである。したがって、端 1 と 2 で、

$$\mu(T_1) + e V_{th}(T_1) = \mu(T_2) + e V_{th}(T_2)$$

が成り立つ。ここで運動エネルギーの代わりに系の化学ポテンシャル μ を用いた。ゼーベック係数 S は、その定義から

$$S = \frac{V_{th}(T_1) - V_{th}(T_2)}{T_1 - T_2}$$

のような、$T_1 \rightarrow T_2$ の極限で,

$$S = - \frac{1}{e} \frac{\partial \mu}{\partial T}$$

と書ける。すなわち、熱起電力は電子比熱の温度に等しい。また、電子の比熱はともに比例するので、金属の熟起電力も T に比例することも直ちに理解できる。熱起電力の測定は、最低次の近似では荷電粒子の比熱の測定といってよい。

通常の金属における電子比熱はフェルミエネルギー E_F が、密度 κ に近似で、S が大シアの $k_B T$ のエネルギーをもつ電子だけが関与しているものである。電子 1 個当たりの比熱は古典粒子の比熱 $3k_B/2$ より小さい。したがって、ドープされた半導体のようにに、相対するフェルミエネルギーの比が小さい系を用いて、$k_B T > E_F$ という条件を実現し、すべての電子に比熱を担わせるが、熱起電力を大きくする最も簡単な方法である。事実、Bi$_2$Te$_3$ をはじめとする従来の熱電変換材料はすべて半導体である。Mahan はの Shane との提唱12もこの範囲に入るもの。彼らは性能指數が大きすぎるとときの状態密度が関数に比例することを見いたした。フェルミ面での状態密度が関数であれば、すべての電子のエントロピーが増える。

電子 1 個当たりの比熱を大きくするもう一つの方法は、格子振動や磁気振動のような自由度を結合させることで、フォノンドランスが典型的である13。纯度の高い金属では、低温で大きなエネルギーをもって増大する。これは電子が音響フォノンを伴って移動する現象であり、音響フォノンの比熱が電子によって熱起電力が増大している。Ziman はの、この様子を「格子の熱起電力」と呼んだ。

今度はボルツマン方程式に基づいて、微視的なパラメータを用いて熱起電力を導出しよう。電流密度 j, 熱流密度 q は、電場 E, 温度勾配 ($-\nabla T$) の関数として次のように書ける。

$$j = L_{11}E + L_{12}(-\nabla T)$$

$$q = L_{21}E + L_{22}(-\nabla T)$$

ここで L_{ij} は輸送係数（テンソル）である。簡単のために、立方晶を考え、L_{ij} をスカラーとして扱うこととすると、ゼーベック係数は電流密度ゼロでの電場と温度勾配の比で与えられるので

$$S = \frac{E}{\nabla T} = \frac{L_{12}}{L_{11}}$$

と書ける。また L_{21} はベルク係数 $\Pi = ST$ に関係し、

HOT T_1………………COLD T_2

Fig. 2 Temperature gradient applied to metal rod.

$$
\Pi = ST = \frac{L_{11}}{L_{11}}
$$

(7)

である。いま温度勾配がなく、電流密度 j が有限であるならば、式 (5) から電場 E を消去して

$$
q = \frac{L_{21}}{L_{11}} j = ST j
$$

(8)

を得る。ところで、q/T はエンタロピーの流れであるから、熱起電力は電子の運ぶエンタロピーをとらえる。したがって式 (4) 同様、S が電子の比熱と深く関係していることがわかる。

波数 k の電子のエネルギーを E_k として、L_{11}, L_{12} は

$$
L_{11} = \frac{1}{4\pi} \left[e^2 \nu_k \left(-\frac{\partial f}{\partial E} \right)_{E=E_k} \right] d^3 k
$$

$$
L_{12} = \frac{1}{4\pi} \frac{1}{e} \left[e^2 (E_k - \mu) \nu_k \left(-\frac{\partial f}{\partial E} \right)_{E=E_k} \right] d^3 k
$$

(9)

と書ける。ここで ν_k は波数 k における速度、τ は散乱時間（緩和時間）、f はフェルミ分布関数である。一般に、強相関電子系はバンド電子のように E_k でエネルギーを書けない。しかし、もし適当な方法で相互作用を織り込んで、E_k という一粒子描画（準粒子という）が得られた場合には、式 (9) を使うことができる。式 (9) で与えられる L_{11} を用いて、ゼーベック係数は

$$
S = \frac{L_{12}}{L_{11}} = \frac{1}{eT} \left[e^2 (E_k - \mu) \nu_k \left(-\frac{\partial f}{\partial E} \right)_{E=E_k} \right] d^3 k
$$

(10)

と書ける。ちなみに、散乱時間 τ がエネルギー E に依存しないとし、フェルミ幅縮退条件 $E_F \gg k_B T$ を仮定すれば、L_{11} と L_{12} の間に

$$
L_{12} = \frac{\pi^2}{3} \frac{k_B T}{e} \left[\frac{\partial L_{11}}{\partial E} \right]_{E=E_k}
$$

(11)

という関係が成り立つことが示せる。L_{11} が伝導率 σ であることを用いれば、よく知られたオットの公式

$$
S_{12} = \frac{\pi^2}{3} \frac{k_B T}{e} \left[\frac{\partial \log \sigma(E)}{\partial E} \right]_{E=E_k}
$$

(12)

を得る。これは化学ポテンシャルが E であるときの伝導率を $\sigma(E)$ としたとき、ゼーベック係数は $\sigma(E)$ の対数微分で書けるという表式であり、金属の熱起電力の解析にしばしば用いられる。しかし、$\sigma(E)$ というのは伝導率そのものではないし、仮想的に E を変化させたときの $\sigma(E)$ の振舞は実験的に求まらない。したがって Ziman が指摘しているように、モットの公式がいつでもうまく使えるわけではないことに注意しよう。特に、強相関電子系では、$E_F \gg k_B T$ が常に成立つとは限らない。

式 (12) の逆の極限、すなわち $E_F \ll k_B T$ での熱起電力の表式を導こう。まず、式 (10) を次のように変形する：

$$
S = \frac{1}{eT} \frac{\int e^2 E_k \nu_k \left(-\frac{\partial f}{\partial E} \right)_{E=E_k}} {\int e^2 \nu_k \left(-\frac{\partial f}{\partial E} \right)_{E=E_k}} d^3 k - \frac{\mu}{eT}
$$

(13)

右辺第 1 項は $e^2 \nu_k (-\partial f/\partial E)$ の重みつきで E_k/τ を平均したものと見なせる。E_k の平均はバンド幅を超えることはないので、バンド幅よりも $k_B T$ が十分大きな高温では、第 1 項は温度に比例していくとも小さくなる。ところで右辺第 2 項は、熱力学の恒等式

$$
\frac{\mu}{T} = -\frac{\partial s}{\partial N}
$$

(14)

によって有限である。ここでは s はエンタロピー、N は電子の数である。したがって、高温極限でのゼーベック係数は

$$
S = -\frac{\mu}{eT} = \frac{1}{e} \frac{\partial s}{\partial N}
$$

(15)

と書ける。電子当たりのエンタロピー s と電荷の比で与えられる。式 (4) と類似の式が得られたことに注意しよう。ここでも熱起電力が電子の熱力学量と直接関係していることがわかる。式 (15) はヒエックス (Heikes) の式と呼ばれ、バンド幅の小さい系の高温極限での熱起電力の式として用いられてきた。

式 (15) は、電子が各格子点に局在していると考えてよいような高温極限で、格子点当たりのゼーベックは大さいが熱起電力を示すことを意味する。実は、強相関電子系の熱力学的特徴は、各格子点に残存する過剰なエンタロピーにある。この過剰なエンタロピーを「うまく」電荷に張り付けられれば、大きな熱起電力が発生するであろう。その意味では、強相関電子系は熱電変換材料設計の格好の舞台といえる。

4. 強相関電子系のエンタロピー

本節では、強相関電子系に残存する過剰なエンタロピーとはどのようなものであるかを考察する。N 個の水素原子を集めて水素固体（水素金属）を作ることを考えよう。N 個の水素原子の 1s 軌道は互いに混成して一つの 1s バン

![図3 Schematic picture of half-filled metal.](image)

Fig. 3 Schematic picture of half-filled metal.
Fig. 4 化学的ポテンシャルを、電子の占有率で表示した結果である。Fig. 3(a)に示すように、電子は低いエネルギー帯に多く存在し、1sバンドのエネルギーが低いと、電子は帯電しやすい。Fig. 3(b)に示すように、1sバンドのエネルギーショート、電子は帯電しやすい。Fig. 3(b)に示すように、1sバンドのエネルギーショート、電子は帯電しやすい。

モットギャップ付近で、有効質量が極めて大きい（バンド幅が極めて狭い）ことを示している。前節で、熱起電力は電子比熱に比例すると述べたが、比熱係数を電子の有効質量に比例すると、ギャップ付近の電子は大きな熱起電力をもつ可能性がある。これは電子は電荷とともにπnのエントロピーを導くと、電荷と熱起電力の関係を表すことができる。

Fig. 4に斜線で示した部分が、電子1個あたりの比熱の大きさ、すなわち熱起電力が大きい領域である。n = 2付近は半導体領域で、従来の熱電変換材料が探索されている領域である。n = 1付近は本稿で論議している強相関電子系の領域で、各格子点に残留したエンタロピーと、それによって生じた大きな有効質量をもつ状態である。残留エンタロピーは、各格子点に残留する自由度から決まり、それはスピン自由度だけでなく、相互作用の定義や、電子配置の自由度などさまざまなものがある。その意味では、半導体よりもむしろ強相関電子系の方が、熱起電力の大きな物質を探す視点が大きく、物質探索には適していると考えられる。

残念ながら、モット相関電子系に残るエンタロピーのすべてが利用可能かどうかは、モット相関電子系では、格子点に残った自由度の相互作用（例えばスピン間相互作用）が低温で有効になり、さまざまな相転移を引き起こし、エンタロピーを解放する。その意味では、強相関電子系の研究は、格子点に残る相転移とそれに伴う過剰なエンタロピーが、低温でどのように解放されるかを明らかにする学問であると言ってもよい。

ではもし、いかなる相転移を起こすために、強相関電子系の過剰なエンタロピーが解放されなかったり、何か起こるかどうか、熱力学的第3法則によって、エンタロピーは絶対零度ゼロ状態が存在するのである。その過剰なエンタロピーは、伝導電子に「うまく」張り付いて、電子のエンタロピーは、ゼロ状態が存在するのである。本稿で議論した相互作用が適する電子系は、低温でどのように解放されるかを明らかにする学問であると、その相関電子系の巨大熱効果は、相転移がブロッキングされることによって発生するものである。その相関電子系の巨大熱効果は、層状コンパクト酸化物の物性を概観しよう。

5. 重い電子系

Ce, Yb, U化合物の中のf電子は、高温では各原子位置に局在している。温度が下がるとともに局在f電子は次第に局在化して伝導電子と相互作用し、十分低温で伝導電子は磁気効果を伴って運動する。これは帯磁率や比熱測定によって確かめられ、f電子の磁気効果が電子比熱に変換している。電子比熱は電子の有効質量に比例するから、これは強相関電子系の巨大熱効果がf電子の磁気効果が分けられた状態である。このような系を重い電子系といい、特に我々が国において精力的に研究されてきた。なお、大貫による重い電子系の物性についての解釈が1999年の本会誌に掲載

日本応用磁気学会誌 Vol. 27, No. 4, 2003

175

NII-Electronic Library Service
Fig. 5 Thermoelectric properties of CePd$_3$ (ref. 19).

されているので参照されたい18)。

式 (4) によれば、熱起電力は電子当たりの比熱に比例するので、重い電子系は電荷量起電力をもつことが期待される。また基本には伝導電子を散乱するはずの磁気効果が、伝導電子と非伝導電子（= 協調して）運動しているので、散乱時間が電子が重くなるにつれて増大する。そのため抵抗率有効質量が増大する低温でも金属的伝導を保ち、高い電子因子 s^2/ρ が期待できる。

重い電子が形成されるとき、比熱・磁化率などの熱学的性質に偏重が現れないことに注意しよう。近藤温度以下で、伝導電子を局在 f 電子とスピノー相を重ねることができる、これは相転移ではない。むしろ f 電子の磁性を伝導電子が遮蔽していると考えたほうがよい状態である。近藤効果が弱いときは、伝導電子を介した f 電子間の相互作用 (RKKY: Ruderman–Kittel–Kasuya–Yosida 相互作用) によって磁気秩序が観測される。実際、近藤効果と RKKY 相互作用は f 電子系の中では常に競合する。したがって重い電子系とは、RKKY 相互作用による磁気相転移がブロックされた系であると考えることができる。

Ce 化合物の中で最も優れた熱電性を示す系が、CePd$_3$ である19)。この系の熱電特性を Fig. 5 に示す。この系の近藤温度は 100 K であり、抵抗率のゼーベック係数は近藤温度以上で亜化する傾向にある。抵抗率、ゼーベック係数ともに近藤温度で電荷スピンはなく、近藤温度が相転移温度ではないことを示唆する。室温での抵抗率およびゼーベック係数はそれぞれ 120 μΩ cm、80 μV/K であり、Bi$_2$Te$_3$ と同程度の電力因子 s^2/ρ を示す。しかし残念なことに、CePd$_3$ は熱伝導率が室温 200 mW/cmK と 20)、Bi$_2$Te$_3$ の 10 倍以上高いため、性能指数 Z は小さい。この高い熱伝導率は、格子が堅く安定であることから高い格子熱伝導率を起因する。したがって、多くの熱電変換材料と同じく、格子熱伝導率の低下が必要である。

これまで、重い電子系は Ce、Yb、U を含む f 電子系で発見されてきた。しかし最近になって、d 電子を含む化合物の重い電子系が報告され始めた。特に熱電特性の高い系として注目されている系が、西野ら21)によって見いだされたホイズリー型 Fe$_2$VAl 合金である。彼らは、この系が d 電子による近藤半導体の候補であると主張している。

近藤半導体22)について簡単にふれておくと、低温で f, d 電子が伝導電子とともに「選出」し始めると、系のフェルミエネルギーやギャップが発生する可能性がある。この様子を模式的に Fig. 6 に示す。Fig. 6 左側では、局在バンド (localized band) と伝導電子のバンド (s-p band) は互いに独立である。二つのバンドの電子が相互作用してバンド間の混ざりが生じれば、Fig. 6 右側に示すように、バンドの交点で解けギャップが開く。ギャップは混ざりの大きさに比例するので、f 電子系の場合、近藤温度程度の低温でギャップが徐々に閉じ始める。近藤半導体は、このギャップ内にフェルミエネルギーがくる系で、CeNiSn がその典型例である。この研究の詳細は文献 22, 23 に詳しい。特に CeRhAs の性能指数 Z は 20 K で 10$^{-3}$/K と Bi$_2$Te$_3$ にみ高く、低温での熱電特性が注目されている。近藤半導体には、すでに相関相効果で重くなった電子が、通常の縮退半導体のみの少数キャリア系となって、熱電特性をいっそう向上させるのではないかという期待がある。

Fig. 7 に Fe$_2$VAl の結晶構造を示す24)。Al と B 原子は NaCl 構造をとり、Al と B オンでできる 8 個の立方体の体心位置に C, D 原子が位置する。B, C, D 原子がすべて Fe である合金が Fe$_2$Al で、キュリー温度 800 K の強磁性体である。この系の抵抗率、キュリー温度以上で非金属性の負の温度係数をもち、強磁性の発現とともに金属性の伝導を示す。西野ら25)は、Fe$_3$Al の Fe サイトを V で部分置換していくと、キュリー温度が単調に低下することを見いだした。さらに、Cu を少々 1/3 置換するとキュリー温度が消失し、全温度域で非金属性の電気伝導が現れることを見発見した。V は主に B サイトの Fe を置換していると考えられ、化学量論組成 Fe$_3$VAl で非磁性となる。

Guo ら26)のバンド計算によれば、V が B サイトを占有するとき、系は非磁性であり、フェルミエネルギーや近藤の状態密度の抑制 (擬ギャップ) が起きる。この系は半金属であり、Fe の t_{2g} バンドによるホールポケットと、V の e
Fig. 8 Thermoelectric properties of Al-deficient Fe$_2$VAI.

バンドによる電子ポケットが共存する。彼らは、この系の
凝ギャップが近藤半導体 FeSi で見られる凝ギャップと類
似の現象であると指摘している。Fe$_2$VAI の電子比熱係数
は 14 mJ/mol K2 であり、バンド計算の値 0.69 mJ/
mol K2 よりも 10 倍以上大きく、近藤半導体（あるいは近藤
半金属）というよりも電磁状態をもつ29。

Fe$_2$VAI と CeNiSn の類似の違いは、不純物置換効果に
ある。良質な CeNiSn では、抵抗率は低温まで金属的伝導
を保つ。この系に少量の不純物を導入すると、抵抗率は低
温で急激に増大する29。それに対して Fe$_2$VAI の凝ギャッ
プ構造は不純物に対して安定で、不純物ドーピングによっ
てキャリア濃度を制御できる。その結果、偏化学論組成
または元素置換によって、低温の抵抗率が急激に減少する
と同時にゼーベック係数が大幅に増大する。例えば、V サ
イトの Mo 置換によって電子をドーピングことができ、Ti
置換によってホールをドープできる27。特に Al の Si 置換
で系は低温で電磁的伝導と高い熱起電力を発現し、その電
力因子 S^2/p は Bi$_2$Te$_3$ の電力因子 S^2/p を上回る28。

Fig. 8 に Al 欠損した Fe$_2$VAI の電熱特性を示す29。抵
抗率はほとんど温度変化せず、キャリア点でケプスをもっ
たあとで、低温での伝導を示す。抵抗率の絶対値は室温
で 0.6 mΩcm で、Bi$_2$Te$_3$ の抵抗率の 1/2〜1/4 である（も
ろし合金の抵抗率としては異常高）ゼーベック係数は、全
温度で負であり（図 - S を示している）、250 K 付近で極値をもつ。これは高温で異符号のキャリアが熱
伝導されることを意味し、この系が半金属であることを示
す。その絶対値は 100〜150 μV/K 程度であり、Bi$_2$Te$_3$ と
比べても過色である。ただし、類似の構造をもつハファスホ
イスターゼ合金30 と電力因子は Bi$_2$Te$_3$ 以上高いが、熱伝
導率が高すぎず性能指数が低いので、熱伝導率の測定が得
たたい。

この系が、電磁的に重い電子系であるかどうかは、
今後の研究を待たなければならない。バンド構造を見ると
り、局在バンド上伝導バンドのような 2 種類のバンドは存
在しない。したがって伝導効果を重くする機構は明らかで
ない。しかし、電子の重い電子系で電磁転移が抑えられるように、Fe$_2$VAI では強磁性転移が低温まで
抑えられている。前節で議論したように、Fe の電磁エン
トロピーが強磁性転移によって解放されないため、伝導電
子に張り付いて、「重い電子」的に振舞っているのではない
だろうか。実は、すでに述べのような状態が存在しており、
低価帯で「重い電子」的に振舞っている。

6. 熱起変換酸化物

酸化物半導体は、いくつかの例外を除いて抵抗率が高
く、熱起変換材料には不適当であると思われていた。とり
わけ、多くの遷移金属酸化物は、強い電子相関のために絶
縁体となっており、熱起変換材料としては問題であると思
われてきた31,32。数年前、我々は、NaCo$_2$O$_4$ が酸化物
の中では群を抜いて高い熱起特性を示すことを見発見し
た33。Fig. 9 に示すように、この系は、CdI$_2$ 型の Co$^2+$
ブロックと Na 層が c 軸方向に交互に積層した層状化合物
である。Co$^2+$ ブロックは金属的伝導性を担い、酸素欠損が
少なく高温まで化学的に安定である。一方、Na イオンは
サイトを 50% ランダムに占有しており、いわば Na と欠陥
が 1:1 で混合している。そのために、この系の層状構造は、
引き金となる伝導帯である CoO$^2+$ ブロックと原子レベルのよ
うに亂れた Na 層の超格子と見なすことができる。

この系の性質については、すでにいくつか解説記事を著
した。興味ある読者は文献 9〜11 を参照していただくとく
って、ここでは NaCo$_2$O$_4$ と他の層状遷移金属酸化物の熱
電特性を比較し、その異差を示そう。Fig. 10. に、
NaCo$_2$O$_4$ 準晶の熱起特性を他の層状遷移金属酸化物と
ともに示す33、すべての測定は準晶を用いて行い、測定
方向は層に平行な方向である。NaCo$_2$O$_4$ の抵抗率は室温
で 200 μS/cm と、遷移金属酸化物の中ではトップクラスの
伝導性を示し、ゼーベック係数は室温で 100 μV/K に達し
ている。高温超伝導体 Bi$_2$Sr$_2$Ca$_2$Cu$_2$O$_8$ の抵抗率は、
NaCo$_2$O$_4$ とはほぼ等しく、そのゼーベック係数は NaCo$_2$O$_4$
の 1/10〜1/100 であることがわかる。高温超伝導体から
キャリア濃度を減らして熱電体にした物質（高温超伝導体
中の物質）Bi$_2$Sr$_2$ErCu$_2$O$_8$ では、NaCo$_2$O$_4$ を上回るゼーベ
ック係数が観測されるが、抵抗率は 3 桁以上高い。これは高
温超伝導体の熱電特性が極めて低いことを意味してい
る。La$_2$Ni$_3$O$_8$ では状況はもっと悪い。抵抗率は母材とな
でありながら、ゼーベック係数は室温で 10 μV/K 程度と
金属なみの大きさにとどまっている。この系は電子格子相
互作用が強く、キャリアはスモールポーラロンを形成し自
己自変電子となる34、そのために、伝導帯は局在サイトとそ
の局在サイトへのホッピングに支配され、移動度は活性化
型に従って低温で急激に小さくなる。低温の過渡型で、熱
起電力は移動度によらないので、ポーラロン伝導の場合、
低温度では熱起電力に比べて抵抗率が極めて大きくなる
でしょう。

層状コバルト酸化物の大きな熱起電力を説明する方法は
いくつかある。まず一つの方法は、バンド計算に基づく
説明である。Singhは、NaCo2O4のバンド構造を計算し、この系がE_Fで高い状態密度をもつことを示した。さらに彼は、式(10)を数値的に解くことによって、室温のゼーベック係数を110μVK/程度と見積もった。ただし、この系にバンド理論を適用できるかどうかは疑わしい。この系は異常な元素置換効果を示し、特にPd置換効果は単純なバンド構造では説明できない。二つ目の方法は、重い電子系と対比する方法である。層状コバルト酸化物の低温の比熱・帯密度は重い電子系の値と定量的にもよく一致する。ただし、NaCo2O4には局在電子と伝導電子のような2種類の電子は観測されていない。三つ目の方法は拡大結晶的式による説明である。小倉八重らはコバルト酸化物の熱起電力におけるd軌道の縮退効果の重要性を指摘した。NaCoO₃では、Co³⁺とCo⁴⁺が低スピン状態で共存している。Fig. 11にその電子配置の模式的に示す。Co³⁺が多重項をもたないのに対して、Co⁴⁺は六つの多重度（三つの軌道の自由度×二つのスピン自由度）が縮退している。したがって、電荷が動く（すなわちCo³⁺とCo⁴⁺が入れ替わる）と、電荷eに対してエントロピーは$k_B \log 6$だけ増えることになる。このとき発生する熱起電力は、$k_B \log 6/e=150 \mu V/K$となり、これは層状コバルト酸化物の高温極限の熱起電力にほぼ一致する。しかし、この説明は低温での高い伝導性については何もいえない。

現在、層状コバルト酸化物に対する従来的な理論は存在しないが、筆者は2番目と3番目の説明の折衷案が実現しているのではないかと考えている。すなわち、NaCo2O₄の高い熱電特性は、この系のCoサイト当たりの大きなエントロピー$k_B \log 6$が低温まで解放され、伝導電子に張り付いて「重い電子」的に振舞うためであると考えている。エントロピーが解放されない理由は、この系がいわゆる相転移をも示さないためである。NaCoO₃は「相転移を起こさない系」ではなく、「相転移を起こせない系」である。すなわち何が相転移を阻害する原因によって、相転移がブロックされている系である。相転移をブロックするものとして、Naの乱れや、CoO₃面の三角格子（フラストレーション）による共存の酸素八面体ネットワークなどが挙げられる。

この考えを裏づける実験が、Cu置換効果による相転移現象である。NaCo₂O₃では、不純物（乱れ）を導入することで秩序が発生する。つまり「相転移を起こせない状態」は乱れによって壊される。これは"order from disorder"と呼ばれる現象であり、前記のAI欠損Fe₂VAlの強磁性も"order from disorder"といえるかもしれない。我々は、Cu不純物によって生じた秩序が、金属Crにおけるスピン密度波（SDW）と類似的現象であることを報告した。また本橋らはNa過剰なNaCo₂O₃試料で、22K付近にCu置換の場合と同様の相転移を見いだしている。SDWの片鱗は、乱れのない試料でも動的な揺らぎとして観測され始めている。ごく最近、杉山らは、NaCo₂O₃の周辺物質であるCa-Co-OにおいてSDW的な磁気揺らぎが100K以下で成長することをμSR測定によって見いだした。小林らは、NaCo₂O₃のCoサイトのNMR測定から、Coサイトのナイトシフトが40K以下で発生することを見いだした。

7. まとめ

この文脈では、強相関電子系がマクロな縮退と過剰なエントロピーをもつこと、そしてそのエントロピーが相転移によって解放されないこと、巨大な熱電効果が観測されることを示した。その典型例が、f電子の磁性が遮蔽された系である重い電子系である。ここで取り上げた二つの新物
質。Fe_{2}VAI と Na_{2}CO_{3} はともに大きな電子比熱を示すという意味で強い電子的であるが、電子を重くする微視的機構は明らかではない。どちらの物質にも共通しているのは、系の過剰な エントロピーが相転移によって解放されない点である。

水は 1 分子では凍らない、多くの分子を集めると凍る
と有色する [50]。それゆえに相転移の研究は凝縮相物理学の王道とし、またミクロとマクロの掛け橋として、長く研究されてきた。しかしここまでの相転移の研究は、相転移そのものを探索することに終止符を打つことがある。我々は、相転移の起きない物質を面白くないものとして捨て去ってきた。しかしもし、相転移が起きないのではなく起こせないのだとしたら？起きるはずの相転移がすべてブロックされているとしたら？強相関電子系による熱電変換材料の研究は、相転移を起こせない物質がもつ新しい機能と可能性を我々に教えてくれる。このような研究の延長線上に、新しい凝縮相物理学の萌芽があることを期待してまとめに代えたい。

謝辞
本稿で述べられた物理的考察は、研究室の大学院生・学部学生の熱心な研究成果と、博士研究員の藤井武則氏との日常的な議論に基づいている。早稲田大学の栗原進氏と寺崎一郎氏には、脱稿前原稿の Critical Reading を含め、強相関電子系についての多くのアドバイスを受けた。名古屋工業大学の西野洋一氏には Fe_{2}VAI の物性について一から教えていただき、脱稿前原稿についても有用なコメントをいただいた。この場を借りて感謝したい。

参考文献
3) 初等的な数教科書として、内野倉光・前田宏朗・寺崎一郎: “高電伝導導体の物理” （培風館, 1995）。
5) 固体物性論集号「巨大電磁伝導の新展開」p.32 (1997).
10) 寺崎一郎: マテリアルインテグレーション, 13(7), 23 (2000).
16) 熱起電力の説明が、本稿と文献 13 で示されている点に注意されたい。文献 13 では、熱電気変換の問題は、デリア＝μ)/dx と热起電力関係に整理されている。本稿では、「実際に観測される」電場 E の等価の μ)/dx としている。それに伴って化学ポテンシャル μ は温度のみの関数とした。このことは例えば N. W. Ashcroft and N. D. Mermin: “Solid State Physics” (Saunders, 1976), p. 257 で詳しい。
34) 津田隆雄: 増: “電気伝導酸化物” (東京堂, 1983).
45) バリティ座談会 (2001年16鮮5月号, p. 46) での田崎晴氏の発言の要約。

（2002年１２月７日受理）