船舶技術研究所報告 第9卷 第4号 資料

水面落下衝撃に関する研究

(第1報:人体模型による実験)

小黒英男* 緒方辰人* 奥山信一* 土屋正之* 原野勝博* 藤井 忍* 加藤健一*

Study of Falling Shock on the Water Surface by Human Model

by

Hideo Oguro, Tatsuto Ogata, Shinichi Okuyama, Masayuki Tsuchiya,

Katsuhiro Harano, Shinobu Fujii and Kenichi Kato

We consider that at the critical moment of distress, escape from the abandoned ship is done individually or collectively. The studies were tried to obtain shock deceleration and its duration time in the case of individual escape. The experiments were made by human model using the life-saving appliances drop testing tank of Ship Research Institute.

The results are summarized as follows:

- (1) The fall-time can be obtained by free fall calculation from the heights under 8 meters, but in case of higher heights it is necessary to consider the condition of the air resistance.
- (2) The posture of falling body is scarcely changed through the fall.
- (3) The deceleration of slant fall is 10 times that of head-first or feet-first fall.
- (4) The shock duration time in case of head-first or feet-first fall is 100-300 milliseconds, and that of slant fall is 15-40 milliseconds.
- (5) Further study is expected for the determination of safety fall height limit, because it is necessary the medical research for human tolerances.

1. まえがき

船舶が損傷し,その乗組員が退船の止むなき状態に 立ちいたった場合,船舶の周辺海面が油火災を発生し ていない条件のもとでは,船舶からの脱出方法として 集団脱出と個人脱出が考えられる。

一般に、退船に際して時間的余裕のある場合は、救 命艇や膨張型救命いかだ等による集団脱出方式が、脱 出後における乗組員の救助の容易さ、脱出員相互の協 力による肉体的、精神的安全性から当然採られるべき であろうが、集団脱出時における救命艇からの海中顕 落等の不測事故とか、脱出完了までの時間が非常に短 かく急速に船から離脱する必要がある場合には、集団 脱出方式の採用が不可能となり,救命胴衣のみを装着 して船側から海中に飛び込まなければならないという ような個人脱出方式を採らざるを得なくなる。

船舶が小型の場合は、舷側から海面までの高さが数 メートルに過ぎないから、飛び込みの際に生ずる海面 での衝撃のための人体損傷等を特に考慮する必要がな いと考えられるが、船舶が大型になるにつれ、その乾 舷から海面までの高さが10メートル以上となり、着水 時の衝撃力の増大から人体損傷等の二次的事故の発生 が予想される。

人体が衝撃的な力を受けたときの影響は,航空機か らの急速離脱,また,自動車に関する安全工学的立場 から比較的多くの論文が発表されているが,海面への

* 艤装部 原稿受付:昭和47年4月11日

(241)

自由落下衝撃力に関する文献は僅か数編に過ぎず,系 統的実験研究の論文は皆無に等しい。

衝突現象においては、衝撃加・減速度とその作用時 間の他に、落下体に加えられる回転力、圧縮力、剪断 力等が人体損傷の物理的要因となるが、人体を使用し ての実験は、生体は勿論、死体でも法的に不可能であ るため、主として人体模型(以下ダミーと呼ぶ)と、 実験動物を用いて行なわれて来たが、ダミーと人体、 動物と人体との関係等困難な要件と共に未知の分野が 余りにも多い。

本研究は、船舶遭難時の個人脱出を想定し、乗組員 が船の舷側から海面に飛び込む際の着水衝撃に関する 基礎資料を得るため、当部に設置されている救命器具 落下試験水槽と、体格、体重、各部重量および重心位 置が、我々日本人の標準に合わせて製作されている衝 突実験用ダミー(3DGM-JM50-67)を使用して水 面への自由落下衝撃実験を行なったもので、社団法人 日本海難防止協会との共同研究の一部である。

2. 実験に関する理論

落下着水時に人体各部に加えられる衝撃減速度とそ の作用時間等の値は,落下中の空気抵抗による落下速 度の変化(衣服,体の回転等で変化する),着水時の 人体の接触面積の大小と形状,また,相互の弾性等に よって著しい差異を生ずる。

力学的には,落体の落下高さが決まれば,着水直前 の運動速度,運動エネルギー,運動量等は周知の計算 式で算出し得るが,衝撃減速度やその作用時間等は前 述のような多くの要因によって変化するため,簡単に は求め得ない。

また,落体の落下距離が大きくなると,それが受け る空気抵抗が無視し得なくなり,それを加えた計算式 で検討する必要がある。今,落下中の空気抵抗が速度 の2乗に比例して落体に作用すると仮定すれば(風圧 計算等に準ずる),次の運動方程式から,

m・d²x/dt²=m・g-K (*dx/dt*)²······(1)
 自由落下時の時間*t* に対する落下速度*v*と落下距離
 *x*はそれぞれ次式の如く求められる。

$v = \frac{exp(2akt) - 1}{exp(2akt) + 1} \cdot a$	(2)
$x = \frac{1}{k} \log \frac{1}{2} \left\{ exp\left(2akt\right) \right\}$	$+1 \} -a \cdot t $ (3)

但し, *a*: 終極速度 (=(*W*/*K*)^を), *k*=*K*⋅*g*/*W*, *K*: 抵抗係数, これらの式で計算した落下高さ*h*と着 水直前の落下速度との関係曲線を 図−1 に示した。

図-1 落下高さと落下速度の曲線

(242)

落体の着水直前に保有する運動量は,着水後運動が 停止するまでの各時間に対する衝撃減速度の総和と落 体の質量との積に等しいということから,

の関係が得られる。

今、衝撃波形を三角形で近似し得ると仮定すれば、 衝撃作用時間をτとしたときの最大減速度 α_{max} は $\alpha_{max} = 2V/\tau$ (5) となり、(5)式に空気抵抗を考えない自由落下時の落体 の速度 $V = (2g \cdot h)^{\frac{1}{2}}$ を V = v として代入すると

(a)

 α_{max} 12,

 $\alpha_{max} = (8g \cdot h)^{\frac{1}{2}} / \tau \dots (6)$ となる。空気抵抗を考える場合は、(5)式のVに(2)式の v を代入すればよい。衝撃波形が半正弦波で近似され
る場合は、(6)式で得られた α_{max} の値を1.3倍すればよ
い。

3. 実験方法

衣服, 救命胴衣等を着て海面に落下または飛び込む 場合を想定し, 写真-1 のダミーにゴム布製の防水衣 を着せ(写真-2), 表-1 の実験番号A, B, BOおよ

(b)

写真-1 衝擊実験用人体模型(3DGM-JM50-67)

写真-2 防水衣着用ダミー

写真-3 救命胴衣装着ダミー

(243)

Ш

簽	腕、脚共閉じ	"	"	"	"	"	"	"	"		院, 脚共開き	"		腕上伸、脚共閉じ	"	"	"			
声さ(m)	e	4	2	9	2	8	10	12	14		. 2	3		2	4	8	12			
IA No.	34-D-a	36—D—a	38—D—a	40-D-a	42—D—a	44-D-a	46—D—a	48—D—a	50-D-a	立脚眼き	29-D-b	19D-b	Ť.	C - 2	C - 4	C - 8	C - 12			
実験番号	B - 3	B - 4	B - 5	B — 6	B - 7	B 8	B - 10	B - 12	B - 14	4. 斜	BO – 2	BO - 3	5. 倒	C – 2	C - 4	∞ 	C - 12			
簽巻		腕、脚共閉じ	"	11	"	"	11	11	11		腕、脚共閉じ	11			"	"	"		腕、脚共閉じ	"
高さ(m)		1	7	3	4	5	9	7	8		2	3	4	9	œ	10	14	-	F	2
IEI No.	Ť	1-A-a	21Aa	31-A-a	35—A— a	37—A—a	39—A—a	41-A-a	43—A—a	立調衣付	AL - 1	AL - 2	AL - 3	AL - 4	AL - 5	AL - 6	AL - 7	Ţ	17-D-a	28—D—a
実験番号	1. 直	A - 1	A – 2	A - 3	A — 4	A - 5	A — 6	A – 7	A – 8	2. 直	AL - 2	AL - 3	AL - 4	AL - 6	AL - 8	AL - 10	AL - 14	3. 斜 1	B – 1	B – 2

14

び**C**の試験を行ない,また,その上に救命胴衣(チョ ッキ式SK-1型)を取り付け表-1の実験番号AL(写 真-3)の試験を行なった。

落下中および着水時の衝撃減速度は、ダミーの頭部, 胸部および腰部に取り付けたストレーンゲージ型三軸 加速度ピックアップ(写真-4)で、また、落下開始か

(上) 頭 部

(下)腰部 写真-4 加速度ピックアップ取り付け状態 ら着水までのダミーの姿勢等の観察は、16mm撮影機 (ボレックス H-16)による高速撮影(64駒駆動、シ ャッター開度約70°、露出時間約¹/400秒)フイルムで行 なった。落下高さの決定は、ダミーから吊り下げた目 盛入りロープでダミー最下端から水面までの高さを読 んで行なった。落下試験は、測定値の平均化を計り、 表-1 の各条件で5回ずつ連続して実施した。 ダミー の頭,腕,脚等の可動部と胴体との結合は,実験C以 外では固く,実験Cでは手で動く程度に調整した。こ れは,水槽底部との二次衝突でダミーの破損が心配さ れたためである。ダミーの吊り上げは,実験A,ALで は頭部に,実験B,BOでは腹部に,実験Cでは脚部 に取り付けた吸着鋼板(200mm, 10mm⁴)を磁気 フックで吸着して行ない,所定の高さとした後十分静 止させ,フックの磁力解放で自重により自然落下させ た。衝撃力測定用のピックアップからのコード類は, 一括して吸着鋼板の取り付け部からダミー外に引出し, キャプタイヤケーブルを十分弛ませて各測定器(動歪 測定器等)に導びいた。

4. 実験結果の解析法

ダミー各部のX,Y,Z三方向の衝撃減速度の時間 に対する波形曲線から、基線と波形とに囲まれた面積 を1mm目盛方眼紙を用いて求めた。この面積値は、 (4)式の $\int \alpha \cdot dt$ 即ち衝撃減速度の時間積となる。5回 の落下試験波形から求めたそれぞれの面積値の平均減 速度積X,Y,Zを基本値として解析を行なった。

図-2 力の作用方向

(245)

力の作用方向は,実験Aの直立状態を基準とし, 図-2のように統一した。従って, 衝撃力の作用方向 に対する衝撃減速度積Pは,

毎に各落下高さに対する変換係数を求め、0.3~1.0の 値のみ取り出し (30% 以下と100%以上の値は、測定 誤差で生じたものとした)、 それらの平均値と標準偏 差値ならびに全事象の90%が含まれる値を求めた。こ れらの値から、計算により逆に落下高さ 2~30mの2 m毎の平均減速度積を算出した。これらの計算には、 電子計算機 FACOM 230-10 を用いた。

5. 実験結果とその検討

落下衝撃減速度波形の代表例を 図-3~15 に,また, 計算機で算出した結果を 表-2~16 に示した。これら を基に各項目毎に検討する。

図-3 衝撃減速度曲線 (1)

(246)

図-5 衝撃減速度曲線 (3)

(247)

図-7 衝撃減速度曲線 (5)

(248)

図-9 衝撃減速度曲線 (7)

(249)

図-10 衝撃減速度曲線 (8)

図-11 衝撃減速度曲線 (9)

— X

図-13 衝撃減速度曲線 (11)

(251)

図-15 衝撃減速度曲線 (13)

表—2 STATISTICAL CALCULATION OF FALLING TEST (A—No. 1)

H (M)	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	(X. Y-MEN)	KAKU(2) (Y-JIKU)
2 3 4 5 6 7	$\begin{array}{c} 0.\ 625\\ 0.\ 780\\ 0.\ 905\\ 1.\ 020\\ 1.\ 120\\ 1.\ 215 \end{array}$	$\begin{array}{c} 0.\ 1640 \\ 0.\ 2320 \\ 0.\ 2200 \\ 0.\ 2890 \\ 0.\ 4355 \\ 0.\ 1956 \end{array}$	$\begin{array}{c} 0.\ 0540 \\ 0.\ 0550 \\ 0.\ 0684 \\ 0.\ 1480 \\ 0.\ 1170 \\ 0.\ 2338 \end{array}$	$\begin{array}{c} -0.\ 0265\\ -0.\ 2500\\ -0.\ 4570\\ -0.\ 5820\\ -0.\ 3801\\ -0.\ 7695\end{array}$	$\begin{array}{c} 0.\ 1746\\ 0.\ 3454\\ 0.\ 5117\\ 0.\ 6664\\ 0.\ 5897\\ 0.\ 8276 \end{array}$	$\begin{array}{c} 0.\ 27342\\ 0.\ 44151\\ 0.\ 56644\\ 0.\ 65974\\ 0.\ 53297\\ 0.\ 69248 \end{array}$	$\begin{array}{r} - & 8.72 \\ -46.35 \\ -63.24 \\ -60.84 \\ -40.12 \\ -68.38 \end{array}$	71.7776.6672.7262.8874.9639.91
	KS(MEAN])=0.5786	KS(**2M	EAN)=0.09	00 90%R A	ANGE=0	. 8635, 0. 29	37
	H (M)			90% R ANG (GE A*T G*S)			
	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	$\begin{array}{c} 0.\ 3696\\ 0.\ 5227\\ 0.\ 6402\\ 0.\ 7393\\ 0.\ 8266\\ 0.\ 9055\\ 0.\ 9780\\ 1.\ 0455\\ 1.\ 1090\\ 1.\ 1690\\ 1.\ 2260\\ 1.\ 2805\\ 1.\ 3328\\ 1.\ 3831\\ 1.\ 4317 \end{array}$		$\begin{array}{c} 0.\ 5516\\ 0.\ 7801\\ 0.\ 9555\\ 1.\ 1033\\ 1.\ 2335\\ 1.\ 3513\\ 1.\ 4595\\ 1.\ 5603\\ 1.\ 6550\\ 1.\ 7445\\ 1.\ 8296\\ 1.\ 9110\\ 1.\ 9890\\ 2.\ 0641\\ 2.\ 1366\end{array}$	$\begin{array}{c} 0.\ 1876\\ 0.\ 2654\\ 0.\ 3250\\ 0.\ 3753\\ 0.\ 4196\\ 0.\ 4597\\ 0.\ 4965\\ 0.\ 5308\\ 0.\ 5630\\ 0.\ 5934\\ 0.\ 6224\\ 0.\ 6501\\ 0.\ 6766\\ 0.\ 7022\\ 0.\ 7268\\ \end{array}$			
PAUSE	5555							
	表—3	STATISTI	CAL CAL	CULATION	OF FALLI	NG TES	I (A—No. 2)	
H (M)	$\begin{pmatrix} T\\ S \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	$\begin{array}{c} \mathbf{KAKU}(1) \\ (\mathbf{X}, \mathbf{Y}\text{-}\mathbf{MEN}) \end{array}$	KAKU(2) (Y-JIKU)
2 3 4 5 6 7	$\begin{array}{c} 0.\ 625\\ 0.\ 780\\ 0.\ 905\\ 1.\ 020\\ 1.\ 120\\ 1.\ 215 \end{array}$	$\begin{array}{c} 0.\ 1374\\ 0.\ 1540\\ 0.\ 1350\\ 0.\ 2100\\ 0.\ 3117\\ 0.\ 1984 \end{array}$	$\begin{array}{c} 0.\ 0086\\ 0.\ 0084\\ 0.\ 0218\\ 0.\ 0498\\ 0.\ 0253\\ 0.\ 2922 \end{array}$	$\begin{array}{c} -0.3380 \\ -0.4360 \\ -0.6300 \\ -0.6730 \\ -0.3792 \\ -0.7706 \end{array}$	$\begin{array}{c} 0.\ 3649\\ 0.\ 4624\\ 0.\ 6446\\ 0.\ 7067\\ 0.\ 4915\\ 0.\ 8476 \end{array}$	$\begin{array}{c} 0.\ 57125\\ 0.\ 59105\\ 0.\ 71351\\ 0.\ 69965\\ 0.\ 44418\\ 0.\ 70922 \end{array}$	$\begin{array}{r} -67.83 \\ -70.51 \\ -77.75 \\ -72.21 \\ -50.48 \\ -65.37 \end{array}$	$\begin{array}{c} 86.\;41\\ 86.\;87\\ 80.\;82\\ 76.\;65\\ 85.\;35\\ 34.\;17 \end{array}$
	KS(MEAN)=0.6214	KS(**2 M	(EAN) = 0.09	76 90% R .	ANGE=0	0.9301, 0.31	28
	H (M)	A*T (G*S)		90%RANG (G	E A*T *S)			
	$ \begin{array}{c} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 26 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27$	$\begin{array}{c} 0.\ 3970\\ 0.\ 5615\\ 0.\ 6877\\ 0.\ 7940\\ 0.\ 8878\\ 0.\ 9725\\ 1.\ 0504\\ 1.\ 1230\\ 1.\ 1911\\ 1.\ 2555\\ 1.\ 3168\\ 1.\ 3754\\ 1.\ 4315 \end{array}$		$\begin{array}{c} 0.\ 5942\\ 0.\ 8403\\ 1.\ 0292\\ 1.\ 1884\\ 1.\ 3287\\ 1.\ 4556\\ 1.\ 5722\\ 1.\ 6807\\ 1.\ 7827\\ 1.\ 8791\\ 1.\ 9709\\ 2.\ 0585\\ 2.\ 1425 \end{array}$	$\begin{array}{c} 0.1998\\ 0.2826\\ 0.3461\\ 0.3997\\ 0.4468\\ 0.4895\\ 0.5287\\ 0.5652\\ 0.5995\\ 0.6319\\ 0.6628\\ 0.6923\\ 0.7205 \end{array}$			

PAUSE 5555

表—4 STATISTICAL CALCULATION OF FALLING TEST (A-No. 3)

H (M)	T (S)	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
2	0.625	0.1410	0.0110	-0.0295	0.1444	0.22613	-11.78	85.53
3	0.780	0.1410	0.0060	-0.3910	0.4156	0.53125	-70.15	87.56
4	0.905	0.1600	0.0088	-0.4138	0.4437	0.49113	-68.83	86.85
5	1.020	0.2040	0.0098	-0.4130	0.4607	0.45610	-63.68	87.24
6	1.120	0.3733	0.0250	-0.3704	0.5264	0.47577	-44.70	86.16
7	1.215	0.4353	0.1652	-0.5235	0.7005	0.58615	-48.35	69.21
	KS(MEA	N)=0.5080	KS(**2M	(EAN) = 0.04	61 90% R	ANGE=0	. 6541, 0. 36	20
	Н	A*T	!	90%RANGE	A*T			
	(M)	(G^*S)		(G;	*S)			
	2	0.3246		0.4179	0.2312			
	4	0.4590		0.5910	0.3271			
	6	0.5622		0.7238	0.4006			
	8	0.6492		0.8358	0.4625			
	10	0.7258		0.9344	0.5171			
	12	0.7951		1.0236	0.5665			
	14	0.8588		1.1056	0.6119			
	16	0. 9181		1.1820	0.6542			
	18	0.9738		1.2537	0.6938			
	20	1.0264		1.3215	0.7314			
	22	1.0765		1.3860	0.7671			
	24	1.1244		1.4476	0.8012			
	26	1.1703		1.5068	0.8339			
	28	1.2145		1.5636	0.8654			
	30	1.2571		1.6185	0.8958			
PAUSE STOP	5555 5555							

PAUSI STOP

表—5 STATISTICAL CALCULATION OF FALLING TEST (B—No. 1)

(\mathbf{M})	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL	KEISU	$\begin{array}{c} \mathbf{KAKU}(1) \\ (\mathbf{X} \ \mathbf{Y} - \mathbf{MEN}) \end{array}$	KAKU(2)
$\begin{pmatrix} \mathbf{M} \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 11 \\ 14 \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12$	$\begin{array}{c} (3)\\ 0.\ 450\\ 0.\ 450\\ 0.\ 685\\ 0.\ 685\\ 0.\ 780\\ 0.\ 780\\ 0.\ 915\\ 1.\ 030\\ 1.\ 110\\ 1.\ 290\\ 1.\ 465\\ 1.\ 605\\ 1.\ 693\\ \end{array}$	$\begin{array}{c} -0.5845\\ -0.5845\\ -0.5875\\ -0.6345\\ -0.6345\\ -0.6310\\ -0.6310\\ -0.8470\\ -0.7875\\ -0.7800\\ -0.7870\\ -0.1302\\ -0.9140\\ -0.3760\end{array}$	$\begin{array}{c} 0.\ 1535\\ 0.\ 1535\\ 0.\ 2135\\ 0.\ 2135\\ -0.\ 2025\\ -0.\ 2025\\ 0.\ 1400\\ 0.\ 1400\\ -0.\ 1200\\ -0.\ 1063\\ 0.\ 0913\\ 0.\ 1120\\ 0.\ 1700\\ 0.\ 2475\\ \end{array}$	$\begin{array}{c} 0.\ 1490 \\ -0.\ 0885 \\ 0.\ 2200 \\ -0.\ 1335 \\ 0.\ 2520 \\ -0.\ 1425 \\ 0.\ 2620 \\ -0.\ 1595 \\ 0.\ 3630 \\ 0.\ 1163 \\ 0.\ 1663 \\ 0.\ 1663 \\ 0.\ 2550 \\ 0.\ 1200 \end{array}$	$(G^{*}S)$ (0.6224) (0.6107) (0.6626) (0.6391) (0.7121) (0.6811) (0.6974) (0.6657) (0.9292) (0.8031) (0.8027) (0.2388) (0.9640) (0.4658)	$\begin{array}{c} 1.\ 37777\\ 1.\ 35198\\ 1.\ 03725\\ 1.\ 00048\\ 0.\ 91009\\ 0.\ 87046\\ 0.\ 77191\\ 0.\ 73683\\ 0.\ 91994\\ 0.\ 72576\\ 0.\ 62824\\ 0.\ 16719\\ 0.\ 61601\\ 0.\ 27561\\ \end{array}$	$\begin{array}{c} \textbf{(X. Y-MEN)} \\ 13.85 \\ -8.33 \\ 19.38 \\ -12.05 \\ 20.72 \\ -12.07 \\ 22.06 \\ -13.86 \\ 22.99 \\ 8.32 \\ 11.95 \\ 44.02 \\ 15.33 \\ 14.92 \end{array}$	(Y - JIKU) -75. 28 -75. 28 -70. 02 -70. 02 72. 29 72. 29 -77. 49 81. 93 82. 31 -83. 32 -49. 29 -79. 46 -56. 64
14	1.693	-0.3760	0.2475	-0.2330	0. 5068	0. 29987	-27.36	-56.64
	KS(MEAN)=0.8482	KS(**2N	(EAN) = 0.14	05 90% E	RANGE = 1	1.0000, 0.40	37
	H	A^*T		90%RAN	GE A*T			
	(\mathbf{M})	(G^*S)		()	£*S)			
	2	0.5419		0.6388	0.2579			
	4	0.7004		0.9035	0.3647			
	8	1 0838		1.1000 1.9777	0.4407			
	10	1.2118		1.2777 1.4285	0.5767			
	$\overline{12}$	1.3274		1.5649	0.6317			
	14	1.4338		1.6903	0.6824			
	16	1.5328		1.8070	0.7295			
	18	1.6258		1.9166	0.7737			
	20	1.7137		2.0203	0.8156			
	22	1.7974		2.1189	0.8554			
	24	1.8773		2.2131	0.8934			
	26	1.9539		2.3035	0. 9299			
	28	2.0277		2.3904	0.9650			
	30	2.0989		2.4743	0.9989			

PAUSE 5555

.

	表—6	STATISTI	CAL CAL	CULATION	OF FALL	ING TES	T (B-No. 2)	
H (M)	$\begin{pmatrix} T\\(S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 10 \\ 10 \\ 12 \\ 12 \\ 12 \end{array} $	$\begin{array}{c} 0.\ 450\\ 0.\ 685\\ 0.\ 780\\ 0.\ 915\\ 1.\ 030\\ 1.\ 110\\ 1.\ 220\\ 1.\ 290\\ 1.\ 465\\ 1.\ 605\\ 1.\ 605\\ 1.\ 605\\ \end{array}$	$\begin{array}{c} -0.\ 2310\\ -0.\ 4010\\ -0.\ 5150\\ -0.\ 7290\\ -0.\ 7290\\ -0.\ 6500\\ -0.\ 5900\\ -0.\ 5700\\ -0.\ 8680\\ -0.\ 8680\\ -0.\ 8560\\ -0.\ 8560\\ -0.\ 8920\\ -0.\ 8920\\ -0.\ 8920\end{array}$	$\begin{array}{c} 0.\ 0290\\ -0.\ 0155\\ -0.\ 0325\\ 0.\ 0363\\ -0.\ 0463\\ 0.\ 0395\\ 0.\ 1125\\ 0.\ 1063\\ 0.\ 1525\\ 0.\ 1525\\ 0.\ 1460\\ 0.\ 1460\\ 0.\ 1580\\ 0.\ 1580\\ \end{array}$	$\begin{array}{c} 0.\ 0207\\ 0.\ 0345\\ 0.\ 0695\\ 0.\ 0930\\ 0.\ 0930\\ 0.\ 0995\\ 0.\ 0950\\ 0.\ 0570\\ 0.\ 0838\\ -0.\ 0863\\ 0.\ 0680\\ -0.\ 0900\\ 0.\ 0800\\ -0.\ 0760\\ \end{array}$	$\begin{array}{c} 0.\ 2337\\ 0.\ 4027\\ 0.\ 5206\\ 0.\ 7358\\ 0.\ 7363\\ 0.\ 6587\\ 0.\ 6080\\ 0.\ 5826\\ 0.\ 8852\\ 0.\ 8852\\ 0.\ 8855\\ 0.\ 8710\\ 0.\ 8730\\ 0.\ 9094\\ 0.\ 9090 \end{array}$	$\begin{array}{c} 0.\ 51738\\ 0.\ 63044\\ 0.\ 66544\\ 0.\ 81438\\ 0.\ 81500\\ 0.\ 65213\\ 0.\ 54953\\ 0.\ 54953\\ 0.\ 69283\\ 0.\ 69283\\ 0.\ 69302\\ 0.\ 60971\\ 0.\ 61110\\ 0.\ 58112\\ 0.\ 58090 \end{array}$	$5.08 \\ 4.91 \\ 7.67 \\ 7.26 \\ 7.25 \\ 8.68 \\ 8.98 \\ 5.61 \\ 5.43 \\ -5.59 \\ 4.47 \\ -5.91 \\ 5.04 \\ -4.79 $	$\begin{array}{c} -82.84\\ 87.78\\ 86.38\\ -87.14\\ 86.36\\ -86.52\\ -79.20\\ -79.20\\ -79.43\\ -80.03\\ -80.03\\ -80.32\\ -80.32\\ -79.95\\ -79.95\end{array}$
	KS(MEAN	()=0.6357	KS(**2M	EAN) = 0.09	35 90%F	RANGE = 0	0. 9315, 0. 33	99
	H (M)	$(\mathbf{G}^*\mathbf{S})$		90%RAN (0	GE A*1 G*S)	•		
	$ \begin{array}{c} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30 \\ \end{array} $	$\begin{array}{c} 0.\ 4061\\ 0.\ 5744\\ 0.\ 7035\\ 0.\ 8123\\ 0.\ 9082\\ 0.\ 9948\\ 1.\ 0746\\ 1.\ 1488\\ 1.\ 2184\\ 1.\ 2844\\ 1.\ 2844\\ 1.\ 3471\\ 1.\ 4070\\ 1.\ 4644\\ 1.\ 5197\\ 1.\ 5730\\ \end{array}$		$\begin{array}{c} 0.5951\\ 0.8416\\ 1.0307\\ 1.1902\\ 1.3307\\ 1.4577\\ 1.5745\\ 1.6832\\ 1.7853\\ 1.8819\\ 1.9738\\ 2.0615\\ 2.1457\\ 2.2267\\ 2.3049 \end{array}$	$\begin{array}{c} 0.2172\\ 0.3071\\ 0.3762\\ 0.4344\\ 0.4856\\ 0.5320\\ 0.5746\\ 0.6143\\ 0.6516\\ 0.6868\\ 0.7203\\ 0.7524\\ 0.7831\\ 0.8127\\ 0.8412\end{array}$			
PAUSE	30 5555	1.5730		2.3049	0,8412	;		
	表—7	STATISTI	CAL CALO	THI. ATION	OF FALL	ING TES	$T (B-No^{+3})$	
ĮH.	T	X	Y	Z	TOTAL	KEISU	KAKU(1)	KAKU(2)
(M) 1 2 3 4 5 6 7	(S) 0.450 0.685 0.780 0.915 1.030 1.110 1.220	$\begin{array}{c} -0.1905 \\ -0.2685 \\ -0.3840 \\ -0.4613 \\ -0.5970 \\ -0.6400 \\ -0.5510 \end{array}$	$\begin{array}{c} 0.\ 0388\\ 0.\ 1000\\ 0.\ 1165\\ 0.\ 2335\\ 0.\ 1455\\ 0.\ 1750\\ 0.\ 2270\\ \end{array}$	$\begin{array}{c} -0.\ 0605\\ -0.\ 1320\\ -0.\ 2350\\ -0.\ 2505\\ -0.\ 2760\\ -0.\ 2790\\ -0.\ 2210\end{array}$	(G*S) 0.2036 0.3154 0.4650 0.5745 0.6736 0.7197 0.6355	$\begin{array}{c} 0.\ 45070\\ 0.\ 49377\\ 0.\ 59431\\ 0.\ 63587\\ 0.\ 66684\\ 0.\ 65045\\ 0.\ 53177\end{array}$	(X. Y-MEN) -17. 28 -24. 73 -30. 35 -25. 85 -24. 18 -22. 80 -20. 34	(Y - JIKU) -78.48 -69.57 -73.12 -63.15 -76.30 -74.70 -67.60
8 10	$1.290 \\ 1.465$	-0.5240 -0.7200	$\begin{array}{c} 0.\ 3250 \\ 0.\ 2440 \end{array}$	-0.3360 -0.3000	$\begin{array}{c} 0.\ 7022 \\ 0.\ 8172 \end{array}$	$0.54956 \\ 0.57209$	-28.58 -21.53	-58.19 -71.27
$12 \\ 14$	$1.605 \\ 1.693$	-0.8700 -0.4400	$0.1880 \\ 0.4480$	-0.3060 -0.1880	$0.9412 \\ 0.6554$	$\begin{array}{c} 0.\ 60144 \\ 0.\ 38778 \end{array}$	$-18.97 \\ -16.66$	$-77.80 \\ -44.48$
	KS(MEAN	()=0.5576	KS(**2M	EAN)=0.08	26 90%F	RANGE=	0. 8192, 0. 29	61
	H (M)	A*T (G*S)		90%RAN	GE A*1 G*S)			
	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	$\begin{array}{c} 0.\ 3562\\ 0.\ 5038\\ 0.\ 6171\\ 0.\ 7125\\ 0.\ 7967\\ 0.\ 8727\\ 0.\ 9426\\ 1.\ 0077\\ 1.\ 0688\\ 1.\ 1267\\ 1.\ 1817\\ 1.\ 2342\\ 1.\ 2846\\ 1.\ 3331\\ 1.\ 3799 \end{array}$		$\begin{array}{c} 0.5233\\ 0.7401\\ 0.9065\\ 1.0467\\ 1.1703\\ 1.2820\\ 1.3847\\ 1.4803\\ 1.5701\\ 1.6550\\ 1.7358\\ 1.8130\\ 1.8870\\ 1.9582\\ 2.0270\end{array}$	$\begin{array}{c} 0.1892\\ 0.2675\\ 0.3277\\ 0.3784\\ 0.4231\\ 0.4634\\ 0.5006\\ 0.5351\\ 0.5676\\ 0.5983\\ 0.6275\\ 0.6554\\ 0.6822\\ 0.7079\\ 0.7328\end{array}$			

PAUSE 5555

(255)

表—8 STATISTICAL CALCULATION OF FALLING TEST (C—No. 1)

H (M)	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
$\begin{array}{c}2\\4\\8\\12\end{array}$	$\begin{array}{c} 0.\ 578 \\ 0.\ 886 \\ 1.\ 290 \\ 1.\ 565 \end{array}$	-0.5915 -0.4685 -0.9357 -1.1244	-0.2690 -0.6216 -0.4312 -1.0160	$\begin{array}{c} 0.\ 4250 \\ 0.\ 4662 \\ 1.\ 0623 \\ 1.\ 2030 \end{array}$	$\begin{array}{c} 0.\ 7764 \\ 0.\ 9073 \\ 1.\ 4798 \\ 1.\ 9348 \end{array}$	$\begin{array}{c} 1.\ 21532\\ 1.\ 00421\\ 1.\ 15816\\ 1.\ 23640 \end{array}$	33. 18 30. 91 45. 87 38. 44	65.54 37.00 65.25 47.89
	KS(MEAN)=1.0000	KS(**2M	$\mathbf{EAN}) = 0.0$	000 90% F	RANGE=	1.0000, 1.00	00
	H (M)	$\begin{pmatrix} A^*T\\ (G^*S) \end{pmatrix}$		90%RAN (GE A*T G*S)	•		
	$\frac{2}{4}$	0. 6388 0. 9035		$0.6388 \\ 0.9035$	0.6388 0.9035			
	6 8	1.1065 1.2777 1.4285		1.1065 1.2777 1.4285	1.1065 1.2777 1.4285			
	$10 \\ 12 \\ 14$	1.4285 1.5649 1.6903		1.4283 1.5649 1.6903	1.4200 1.5649 1.6903			
	16 18	1.8070 1.9166		1.8070 1.9166	1.8070 1.9166			
	20 22	2.0203 2.1189		2.0203 2.1189 2.2131	2.0203 2.1189 2.2131			
	24 26 28	2. 2131 2. 3035 2. 3904		2. 2131 2. 3035 2. 3904	2. 2131 2. 3035 2. 3904			
	30	2.4743		2.4743	2.4743			

PAUSE 5555

表—9 STATISTICAL CALCULATION OF FALLING TEST (C—No. 2)

H (M)	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
$\begin{array}{c}2\\4\\8\\12\end{array}$	$\begin{array}{c} 0.578 \\ 0.886 \\ 1.290 \\ 1.565 \end{array}$	-0.3905 -0.5027 -0.8167 -0.8081	-0.1386 -0.6138 -0.4860 -0.5730	$\begin{array}{c} 0.\ 1719 \\ 0.\ 3068 \\ 0.\ 3686 \\ 0.\ 4256 \end{array}$	$\begin{array}{c} 0.\ 4486 \\ 0.\ 8506 \\ 1.\ 0193 \\ 1.\ 0781 \end{array}$	0. 70218 0. 94148 0. 79776 0. 68897	$\begin{array}{c} 22.\ 53\\ 21.\ 14\\ 21.\ 19\\ 23.\ 24 \end{array}$	$\begin{array}{c} 70.\ 45\\ 39.\ 31\\ 59.\ 24\\ 54.\ 66\end{array}$

KS(MEAN)=0.7826 KS(**2MEAN)=0.1008 90%RANGE=1.0000, 0.4635

H (M)	$\begin{pmatrix} A^*T\\ (G^*S) \end{pmatrix}$	90%RANGE (G*S)) A*T
2	0. 4999	0.6388	0.2961
4	0.7070	0.9035	0.4188
6	0.8659	1.1065	0.5129
8	0.9999	1.2777	0.5923
10	1.1180	1.4285	0.6622
12	1.2247	1.5649	0.7254
14	1.3228	1.6903	0.7836
16	1.4141	1.8070	0.8377
18	1.4999	1.9166	0.8885
20	1.5810	2.0203	0.9365
22	1.6582	2.1189	0.9823
24	1.7319	2. 2131	1.0259
26	1.8027	2. 3035	1.0678
28	1.8707	2.3904	1.1081
30	1.9364	2.4743	1.1470

PAUSE 5555

Ċ.,

H (M)	$\begin{pmatrix} \mathbf{T} \\ (\mathbf{S}) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
$\begin{array}{c}2\\4\\8\\12\end{array}$	$\begin{array}{c} 0.\ 578\\ 0.\ 886\\ 0.\ 886\\ 1.\ 290\\ 1.\ 565 \end{array}$	$\begin{array}{c} -0.\ 2621\\ 0.\ 3625\\ -0.\ 7350\\ -0.\ 9013\\ -1.\ 5113\end{array}$	$\begin{array}{c} -0.\ 0633\\ -0.\ 5600\\ -0.\ 5600\\ -0.\ 2525\\ 0.\ 6100 \end{array}$	0. 1289 0. 6585 0. 6585 0. 5325 0. 4719	$\begin{array}{c} 0.\ 2988\\ 0.\ 9373\\ 1.\ 1346\\ 1.\ 0768\\ 1.\ 6967 \end{array}$	$\begin{array}{c} 0.\ 46779\\ 1.\ 03745\\ 1.\ 25583\\ 0.\ 84278\\ 1.\ 08421 \end{array}$	$\begin{array}{c} 25.55\\ 44.62\\ 35.47\\ 29.63\\ 16.14\end{array}$	$76. 42 \\ -32. 91 \\ 52. 69 \\ 74. 34 \\ -68. 01$
	KS(MEAN)=0.8621	KS(**2ME	AN)=0.206	3 90% R .	ANGE=1	. 0000, 0. 20	095
	H (M)	$\begin{pmatrix} A^*T\\ (G^*S) \end{pmatrix}$		90%RANG (G	E A*T *S)			
	$\begin{array}{c} 2\\ 4\\ 6\\ 8\\ 10\\ 12\\ 14\\ 16\\ 18\\ 20\\ 22\\ 24\\ 26\end{array}$	$\begin{array}{c} 0.5507\\ 0.7789\\ 0.9539\\ 1.1015\\ 1.2315\\ 1.3491\\ 1.4572\\ 1.5578\\ 1.6523\\ 1.7417\\ 1.8267\\ 1.9079\\ 1.9858 \end{array}$		$\begin{array}{c} 0.\ 6388\\ 0.\ 9035\\ 1.\ 1065\\ 1.\ 2777\\ 1.\ 4285\\ 1.\ 5649\\ 1.\ 6903\\ 1.\ 8070\\ 1.\ 9166\\ 2.\ 0203\\ 2.\ 1189\\ 2.\ 2131\\ 2.\ 3035 \end{array}$	$\begin{array}{c} 0. \ 1338\\ 0. \ 1893\\ 0. \ 2319\\ 0. \ 2677\\ 0. \ 2994\\ 0. \ 3279\\ 0. \ 3542\\ 0. \ 3787\\ 0. \ 4016\\ 0. \ 4234\\ 0. \ 4440\\ 0. \ 4438\\ 0. \ 4827\end{array}$			
	28 30	2.0608		2.3033 2.3904 2.4743	0. 5009			
PAUSE	5555							

表-10 STATISTICAL CALCULATION OF FALLING TEST (C-No. 3)

表—11 STATISTICAL CALCULATION OF FALLING TEST (AL—No. 1)

H (M) 2 3 4 6 8 10 14	$\begin{array}{c} T\\ (S)\\ 0.647\\ 0.785\\ 0.902\\ 1.115\\ 1.306\\ 1.450\\ 1.713\\ \end{array}$	$\begin{array}{c} X \\ -0.1450 \\ -0.2285 \\ -0.1787 \\ -0.3850 \\ 0.1913 \\ -0.6335 \\ -1.0270 \end{array}$	Y 0. 2400 -0. 0470 -0. 0770 0. 1458 0. 2875 0. 6335 0. 5438	Z -0. 2642 -0. 3800 -0. 4419 -0. 6183 -0. 7320 -0. 5740 -0. 7705	TOTAL (G*S) 0.3852 0.4458 0.4828 0.7428 0.8093 1.0640 1.3943	KEISU 0. 60303 0. 56986 0. 53441 0. 67128 0. 63343 0. 74480 0. 82488	KAKU(1) X. Y-MEN) -43. 29 -58. 45 -66. 23 -56. 34 -64. 74 -32. 64 -33. 54	KAKU(2) (Y-JIKU) -31.13 78.37 66.68 -69.25 33.63 -45.00 -62.09
	KS(MEAN)=0.6545	KS(**2ME	AN) = 0.094	42 90% R A	ANGE = 0.	9524, 0.35	65
	$\stackrel{H}{(M)}$			90%RANG (G	E A*T			
	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	$\begin{array}{c} 0.\ 4181\\ 0.\ 5913\\ 0.\ 7242\\ 0.\ 8363\\ 0.\ 9350\\ 1.\ 0242\\ 1.\ 1063\\ 1.\ 1827\\ 1.\ 2544\\ 1.\ 3223\\ 1.\ 3868\\ 1.\ 3485\\ 1.\ 5077\\ 1.\ 5646\\ 1.\ 6195 \end{array}$		$\begin{array}{c} 0.\ 6085\\ 0.\ 8605\\ 1.\ 0539\\ 1.\ 2170\\ 1.\ 3607\\ 1.\ 4905\\ 1.\ 6100\\ 1.\ 7211\\ 1.\ 8255\\ 1.\ 9243\\ 2.\ 0182\\ 2.\ 1079\\ 2.\ 1940\\ 2.\ 2768\\ 2.\ 3568 \end{array}$	$\begin{array}{c} 0.\ 2278\\ 0.\ 3221\\ 0.\ 3945\\ 0.\ 4556\\ 0.\ 5093\\ 0.\ 5579\\ 0.\ 6027\\ 0.\ 6443\\ 0.\ 6834\\ 0.\ 7203\\ 0.\ 7203\\ 0.\ 7255\\ 0.\ 7891\\ 0.\ 8213\\ 0.\ 8523\\ 0.\ 8822\\ \end{array}$			
PAUSE	5555							

ō

27

(257)

表-12 STATISTICAL CALCULATION OF FALLING TEST (AL-No. 2)

H (M)	$\begin{pmatrix} \mathbf{T} \\ (\mathbf{S}) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
$2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 10 \\ 14$	$\begin{array}{c} 0.\ 647\\ 0.\ 785\\ 0.\ 902\\ 1.\ 115\\ 1.\ 306\\ 1.\ 450\\ 1.\ 450\\ 1.\ 713\\ \end{array}$	$\begin{array}{c} 0,0395\\ 0,0575\\ 0,0906\\ -0,3358\\ -0,3513\\ 0,6138\\ -0,3838\\ 0,0725\\ \end{array}$	$\begin{array}{c} -0.\ 0585\\ -0.\ 0770\\ -0.\ 0413\\ 0.\ 0625\\ -0.\ 1275\\ -0.\ 2706\\ -0.\ 2706\\ 0.\ 1160\end{array}$	$\begin{array}{c} -0.\ 2330\\ -0.\ 5060\\ -0.\ 6200\\ -0.\ 8275\\ -0.\ 9385\\ -1.\ 5056\\ -1.\ 5056\\ -1.\ 2995\end{array}$	$\begin{array}{c} 0.\ 2434\\ 0.\ 5150\\ 0.\ 6279\\ 0.\ 8952\\ 1.\ 0101\\ 1.\ 6482\\ 1.\ 5771\\ 1.\ 3066 \end{array}$	$\begin{array}{c} 0.\ 38107\\ 0.\ 65823\\ 0.\ 69500\\ 0.\ 80900\\ 0.\ 79058\\ 1.\ 15379\\ 1.\ 10399\\ 0.\ 77304 \end{array}$	$\begin{array}{r} -73.14 \\ -79.24 \\ -80.87 \\ -67.57 \\ -68.28 \\ -65.98 \\ -72.67 \\ -83.99 \end{array}$	$\begin{array}{r} -34.02 \\ -36.75 \\ -65.49 \\ -79.45 \\ 70.05 \\ -66.20 \\ 54.81 \\ 32.00 \end{array}$
	KS(MEAN)	=0.7633	KS(**2ME	AN) = 0.186	50 9 0%R A	ANGE=1	. 0000, 0. 17	51
	H (M) 2	A*T (G*S) 0.4876 0.6897		90%RANG (G 0. 6388 0. 9035	E A*T *S) 0.1119 0.1582			
	$\begin{array}{c}4\\6\\8\\10\end{array}$	0. 8447 0. 9753 1. 0905		$\begin{array}{c} 0.9033\\ 1.1065\\ 1.2777\\ 1.4285\end{array}$	0. 1382 0. 1938 0. 2238 0. 2502			
	$12 \\ 14 \\ 16 \\ 18$	$ \begin{array}{c} 1.1946 \\ 1.2903 \\ 1.3794 \\ 1.4630 \end{array} $		$ \begin{array}{r} 1.5649\\ 1.6903\\ 1.8070\\ 1.9166 \end{array} $	$\begin{array}{c} 0.\ 2741\\ 0.\ 2960\\ 0.\ 3165\\ 0.\ 3357\end{array}$			
	20 22 24 26	$1.5422 \\ 1.6175 \\ 1.6894 \\ 1.7584$		$\begin{array}{c} 2.\ 0203\\ 2.\ 1189\\ 2.\ 2131\\ 2\ 3035 \end{array}$	$\begin{array}{c} 0.\ 3538\\ 0.\ 3711\\ 0.\ 3876\\ 0.\ 4035\end{array}$			
	28 30	1. 8248 1. 8888		2. 3904 2. 4743	$\begin{array}{c} 0. \ 1000\\ 0. \ 4187\\ 0. \ 4334\end{array}$			
PAUSE	5555							

表--13 STATISTICAL CALCULATION OF FALLING TEST (AL--No. 3)

H (M) 2 3 4 6 8 10 14	T (S) 0. 647 0. 785 0. 902 1. 115 1. 306 1. 450 1. 713	X -0.0660 -0.0550 -0.0456 0.0741 -0.2388 0.3733 0.3163	$\begin{array}{c} Y\\ -0.\ 1090\\ -0.\ 1170\\ -0.\ 0688\\ -0.\ 1041\\ -0.\ 0681\\ -0.\ 1050\\ 0.\ 6655 \end{array}$	Z -0. 2330 -0. 5840 -0. 3825 -0. 8450 -0. 5630 -0. 7775 -1. 0385	TOTAL (G*S) 0. 2655 0. 5981 0. 3913 0. 8546 0. 6153 0. 8688 1. 2733	KEISU 0. 41567 0. 76443 0. 43309 0. 77230 0. 48157 0. 60818 0. 75332	KAKU(1) (X. Y-MEN) -61. 32 -77. 51 -77. 82 -81. 40 -66. 19 -63. 49 -54. 64	KAKU(2) (Y-JIKU) 31. 19 25. 17 33. 53 -35. 44 74. 08 -74. 29 25. 42
	KS(MEAN)	= 0.6040	KS(**2ME	(AN) = 0.149	3 90% R A	ANGE=1	. 0000, 0. 13	19
	H (M) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	$\begin{array}{c} A^*T\\ (G^*S)\\ 0.\ 3859\\ 0.\ 5457\\ 0.\ 6684\\ 0.\ 7718\\ 0.\ 8629\\ 0.\ 9453\\ 1.\ 0210\\ 1.\ 0915\\ 1.\ 1578\\ 1.\ 2204\\ 1.\ 2800\\ 1.\ 3369\\ 1.\ 3915\\ 1.\ 4440\\ 1.\ 4947 \end{array}$	、	90%RANG (G 0. 6388 0. 9035 1. 1065 1. 2777 1. 4285 1. 5649 1. 6903 1. 8070 1. 9166 2. 0203 2. 1189 2. 2131 2. 3035 2. 3904 2. 4743	$\begin{array}{c} {\rm E} & {\rm A}^{*}{\rm T} \\ {}^{*}{\rm S}) \\ & 0.\ 0842 \\ 0.\ 1192 \\ 0.\ 1460 \\ 0.\ 1985 \\ 0.\ 1884 \\ 0.\ 2064 \\ 0.\ 2230 \\ 0.\ 2384 \\ 0.\ 2645 \\ 0.\ 2795 \\ 0.\ 2920 \\ 0.\ 3039 \\ 0.\ 3154 \\ 0.\ 3264 \end{array}$			

ø

PAUSE 5555

.)

表—14 STATISTICAL CALCULATION OF FALLING TEST (BO—No. 1)

H (M)	(\mathbf{S})	X	Y	Z	TOTAL	KEISU	KAKU(1) X. Y-MEN)	KAKU(2) (Y-JIKU)
2 2 2 2 2 3	0. 685 0. 685 0. 685 0. 685 0. 685 0. 780	$\begin{array}{c} -0.\ 4104\\ -0.\ 4104\\ -0.\ 4104\\ -0.\ 4104\\ -0.\ 5620\end{array}$	$\begin{array}{c} 0.\ 0428\\ 0.\ 0428\\ -0.\ 0168\\ -0.\ 0168\\ 0.\ 1028 \end{array}$	$\begin{array}{c} 0.\ 1176 \\ -0.\ 0388 \\ 0.\ 1176 \\ -0.\ 0388 \\ 0.\ 2084 \end{array}$	$\begin{array}{c} 0.4290 \\ 0.4144 \\ 0.4272 \\ 0.4125 \\ 0.6081 \end{array}$	0. 67158 0. 64871 0. 66874 0. 64577 0. 77722	$ \begin{array}{r} 15.90\\ -5.37\\ 15.97\\ -5.39\\ 20.04 \end{array} $	
	KS(MEAN	I)=0.6824	KS(**2ME	AN)=0.048	5 90% R .	ANGE = 0.	8358, 0.52	89
		$\begin{array}{c} \mathbf{A^*T}\\ (\mathbf{G^*S})\\ 0.\ 4359\\ 0.\ 6165\\ 0.\ 7551\\ 0.\ 8719\\ 0.\ 9748\\ 1.\ 0679\\ 1.\ 1534\\ 1.\ 2331\\ 1.\ 3070\\ 1.\ 3786\\ 1.\ 4459\\ 1.\ 5102\\ 1.\ 5719\\ 1.\ 6312\\ 1.\ 6885 \end{array}$		90% RANGE (G* 0. 5340 0. 7551 0. 9249 1. 0680 1. 1940 1. 3080 1. 4128 1. 5103 1. 6020 1. 6886 1. 7710 1. 8498 1. 9253 1. 9980 2. 0681	$\begin{array}{c} {\tt E} & {\tt A}^{*}{\tt T} \\ & 0.3379 \\ & 0.4779 \\ & 0.5853 \\ & 0.6758 \\ & 0.7556 \\ & 0.8278 \\ & 0.8941 \\ & 0.9558 \\ & 1.0138 \\ & 1.0686 \\ & 1.1208 \\ & 1.1208 \\ & 1.1208 \\ & 1.1208 \\ & 1.2184 \\ & 1.2644 \\ & 1.3088 \end{array}$			
PAUSE	5555							
	表—15	STATISTIC	CAL CALCU	LATION O	F FALLIN	G TEST	(BO—No. 2))
H (M)	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU (KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
2 2 3 3 3 3 3	$\begin{array}{c} 0.\ 685\\ 0.\ 685\\ 0.\ 780\\ 0.\ 780\\ 0.\ 780\\ 0.\ 780\\ 0.\ 780\\ \end{array}$	$\begin{array}{c} -0.\ 2555\\ -0.\ 2555\\ -0.\ 3205\\ -0.\ 3205\\ -0.\ 3205\\ -0.\ 3205\end{array}$	$\begin{array}{c} 0.\ 0240\\ 0.\ 0240\\ 0.\ 0203\\ 0.\ 0203\\ -0.\ 0173\\ -0.\ 0173 \end{array}$	$\begin{array}{c} 0.\ 0213\\ -0.\ 0085\\ 0.\ 0295\\ -0.\ 0260\\ 0.\ 0295\\ -0.\ 0260\end{array}$	$\begin{array}{c} 0.\ 2575\\ 0.\ 2567\\ 0.\ 3224\\ 0.\ 3221\\ 0.\ 3223\\ 0.\ 3220\\ \end{array}$	$\begin{array}{c} 0.\ 40306\\ 0.\ 40190\\ 0.\ 41215\\ 0.\ 41176\\ 0.\ 41193\\ 0.\ 41154 \end{array}$	$\begin{array}{r} 4.\ 74 \\ -1.\ 89 \\ 5.\ 24 \\ -4.\ 62 \\ 5.\ 25 \\ -4.\ 63 \end{array}$	$\begin{array}{r} -84.\ 63\\ -84.\ 63\\ -86.\ 37\\ -86.\ 37\\ 86.\ 90\\ 86.\ 90\end{array}$
	KS(MEAN	N)=0.4087	KS(**2MEA	AN) = 0.0044	4 90% R A	NGE = 0.4	4227, 0.394	17
	H	A*T		90%RANGI	E A*T			

(\mathbf{M})	$(\mathbf{\ddot{G}^*S})$	(G*S)	AI	
2	0.2611	0. 2700	0.2521	
4	0.3692	0.3819	0.3566	
6	0. 4522	0.4677	0.4367	
8	0.5222	0.5401	0.5043	
10	0.5838	0. 6039	0.5638	
12	0. 6396	0.6615	0.6176	
14	0. 6908	0.7145	0.6671	
16	0. 7385	0. 7639	0.7132	
18	0.7833	0.8102	0. 7565	
20	0.8257	0.8540	0.7974	
22	0.8660	0. 8957	0. 8363	
24	0.9045	0. 9355	0. 8735	
26	0.9415	0.9737	0.9092	
28	0.9770	1.0105	0.9435	
30	1.0113	1.0460	0.9766	

PAUSE 5555

(259)

$\neg \land$	

表—16 STATISTICAL CALCULATION OF FALLING TEST (BO—No. 3)

H (M)	$\begin{pmatrix} T \\ (S) \end{pmatrix}$	Х	Y	Z	TOTAL (G*S)	KEISU	KAKU(1) (X. Y-MEN)	KAKU(2) (Y-JIKU)
2	0.685	-0.3088	0.0580	-0.2248	0.3863	$0.\ 60471$	-35.58	-79.36
2	0.685	-0.3088	-0.0140	-0.2248	0.3822	0.59826	-36.02	87.40
3	0.780	-0.3216	0.0396	-0.2432	0.4051	0.51778	-36.89	-82.98
3	0. 780	-0.3216	-0.0192	-0.2432	0.4036	0.51588	-37.04	86.58
	KS(MEAN	(1) = 0.5591	KS(**2MI	EAN)=0.042	3 90% R	ANGE = 0.	6932, 0.42	50
	н	А*Т		90%RANGE	A*T			
	(M)	$(\mathbf{G}^*\mathbf{S})$		(G*S	5)			
	2	0.3572		0.4428	0.2715			
	4	0.5052		0.6263	0.3840			
	6	0.6187		0.7670	0.4704			
	8	0.7144		0.8857	0.5431			
	10	0.7988		0.9903	0.6072			
	12	0.8750		1.0848	0.6652			
	14	0.9451		1.1717	0.7185			
	16	1.0104		1.2526	0.7681			
	18	1.0717		1.3286	0.8147			
	20	1.1296		1.4005	0.8588			
	22	1.1848		1.4688	0.9007			
	24	1.2374		1.5341	0.9408			
	26	1.2880		1.5968	0.9792			
	28	1.3366		1.6571	1.0161			
	30	1.3835		1.7152	1.0518			

PAUSE 5555

5.1 落下時間と着水速度

表-2~16のT(S)は各条件で5回ずつ 落下試験を行なった際,落下直前から着水 後まで連続記録した波形曲線から1/100 秒毎 のタイミングライン(精度 3/10,000 秒)を用 いて求めた平均落下時間で、それらを図示 したのが 図-16 である。実験で得られたこ れらの値を(3)式で算出した値と比較する と, 高さ8m以上からの落下時には空気抵 抗係数を約0.05採らないと合致しなくな る。若し空気抵抗を無視したときの落下時 間と比較すると、落下時間で最大0.04秒、 落下高さで0.65mの誤差が出る。これは, 落下高さの最大誤差が約 0.1m, 落下時間 の読み取り最大誤差が約 0.005砂と考えら れることからも余りにも大き過ぎる。従っ て、空気抵抗を無視し得ない。K=0.05と してダミーの落下終極速度を計算すると約 37.4m/s となり, 落下高さ 276m以下では 終極速度に達しなくなる。

Kの値は,落体の落下方向に対する断面 積および形状により変化しようが,それら を落体の重量が変化しても同一と仮定する と,図-17に示すように重量が小さい程落

図-16 落下実験による平均落下時間

(260)

下時間が長くなり,着水時の速度が小さくなる。この 図から,実験に使用したダミーに対する着水速度を求 めたのを図-18に示す。

実際には、オーバー等の衣服類によりKの値が更に 大きくなるものと考えられるから、図-17,18 で得ら れる着水速度より小さな値となろう。従って、両図か ら得た着水速度は、最も大きな値即ち安全側の値とな るものと考えられる。

5.2 落下姿勢

落下試験時に撮影したフイルムを一駒ずつ観察した 結果,落下中におけるダミーの姿勢は初期姿勢と殆ん ど変化なく,僅かに,斜立試験時の12,14mの高さか らの落下の際,体軸に対して回転したのみであった。 落下直前および着水時の姿勢を写真-5~7に示す。人

(a) 吊り下げ

(b) 着水直前 写真-5 直立落下(実験番号A)

写真-6 救命胴衣装着直立落下(実験番号AL)

写真-7 倒立吊り上げ(実験番号C)

体の場合は、四肢の運動や体全体の回転運動が落下中 に生ずると考えられるから、水に対する熟練度や精神 的要素等と共に様々な着水姿勢となるものと予想され る。

5.3 落下衝撃と作用時間

各条件において、ダミー各部に生じたX,Y,Z三 方向の最大衝撃滅速度を表-17に示す。

直立および倒立では,最大衝撃減速度が落下高さ 14m以下では17Gに過ぎなかったが,斜立では,落下 高さ1mですら41Gを生じ,高さ14mでは実に 190G にも及ぶ値を記録した。

図-19,20は表-17の中の一部の最大衝撃減速度を曲 線で示したものである。減速度は高さにほぼ直線的に

(262)

.

÷小田会-𝘿・□□.	落下高さ	No	. 1 (頭)			No. 2(胸)))	
武颢 併	(m)	X	Y	Z	X	Y	Z	X	Y	Z
A - 1	1	+ 3.2		- 2.4	+ 1.3	+ 0.6	- 3.2	- 2.8	+ 2.0	- 2.6
A - 2	2	+ 3.5	+ 3.3	- 3.2	+ 5.0	+ 0.9	- 3.4	+ 5.8	- 2.0	- 2.8
A — 3	3	+ 4.4	- 4.5	- 4.0	+ 5.2	+ 0.8	- 3.6	+ 6.0	- 2.0	- 3.4
A - 4	4	+ 4.0	- 3.0	- 3.6	+ 5.4	-1.2	- 3.2	+ 5.6	- 2.8	- 6.5
A — 5	5	+ 5.0	+ 4.8	- 4.8	+ 7.6	+ 1.6	- 3.2	+ 7.6	- 2.0	- 4.0
A - 6	6	+ 8.5	+ 3.2	-10.0	+ 6.0	+ 1.6	- 4.2	+10.8	- 3.5	- 4.5
A - 7	7	- 7.3	+ 4.5	- 6.0	+ 7.0	+ 5.0	- 5.3	+12.0	+ 3.3	- 3.5
B — 1	1	-41.0	+21.5	+18.0	-15.5	- 2.0	+ 3.0	- 7.5	+ 7.5	- 4.0
B - 2	2	-51.0	+29.0	-33.0	-24.0	- 3.0	+ 4.0	- 8.0	+ 5.0	- 4.0
B - 3	3	-75.0	-20.0	+31.0	-35.0	- 6.0	+ 5.0	- 15.0	+ 7.0	- 5.0
B — 4	4	-52.5	+27.0	+42.0	-40.0	+ 6.0	+ 6.0	- 20.0	+ 10.0	- 7.0
B - 5	5	-75.0	-19.0	+50.5	-56.0	+ 7.0	+10.0	- 25.0	+ 12.5	- 8.0
B - 6	6	-75.0	-36.0	+56.0	-47.0	+ 8.0	+14.0	- 33.0	+ 12.5	-14.0
В — 7	7	-95.0	-22.0	+44.5	-51.0	+14.0	+10.0	- 34.0	+ 21.0	-11.0
B - 8	8	-70.0	+32.5	+25.0	-37.0	+ 8.0	+ 7.0	- 29.0	+ 17.0	-11.0
B - 10	10	-154.0	+50.0	+53.0	-70.0	+13.0	+ 8.0	- 42.0	+ 18.0	-15.0
В — 12	12	-150.0	+59.0	+62.0	-83.0	+12.0	+10.0	- 62.0	+ 18.0	-29.0
В — 14	14	-140.0	+190.0	-135.0	_	_		-100.0	+100.0	-35.0
AL-2	2	+ 3.5	- 2.0	- 5.0	+ 2.5	- 1.0	- 2.5	+ 7.0	+ 5.0	- 5.0
AL-3	3	- 3.0	+ 5.0	- 4.5	+ 4.8	+ 1.5	- 3.5	+ 8.0	+ 3.5	- 6.5
A L – 4	4	+ 5.0	+ 4.0	- 3.8	+ 8.0	+ 2.5	- 5.0	+ 5.8	+ 2.5	+ 5.0
AL-6	6	+ 7.0	+ 4.5	- 7.0	+ 8.5	+ 3.3	- 5.0	+10.5	+ 2.5	- 4.5
AL-8	8	- 5.0	- 4.5	- 5.5	+ 7.5	+ 2.5	- 5.5	+ 8.0	+ 2.5	- 5.5
AL-10	10	-10.0	+ 7.0	- 6.0	- 8.0	+ 4.5	- 7.5	- 9.0	+ 4.0	- 5.5
A L14	14	-12.0	+10.5	- 9.5	-10.5	+ 4.0	- 7.0	-14.0	+ 8.5	- 8.0
BO -2	2	-78.5	+16.0	+33.0	-14.0	+ 3.0	- 5.0	-13.0	+ 3.0	- 8.0
BO -3	3	-73.0	+12.0	+36.0	-20.0	+ 4.0	- 6.0	-14.0	+ 5.0	- 9.5
C - 2	2	- 3.6	- 2.5	+ 3.0	- 2.6	- 2.6	+ 2.5	- 3.5	- 2.0	+ 2.0
C - 4	4	+ 2.8	- 6.2	+ 3.6	- 2.8	- 3.2	+ 2.6	- 5.0	- 4.5	+ 4.5
C – 8	8	- 6.4	- 6.4	+ 9.0	- 5.8	- 4.4	+ 5.6	- 6.0	+ 7.5	+ 8.0
C 12	12	-12.0	-16.0	+17.0	- 8.0	- 6.0	+ 9.5	- 8.5	+10.0	-15.5

表—17 各部位の各軸方向の最大減速度(G)

(263)

図-21 最大減速度計算曲線

比例している。これは、(6)式から導びかれる最大減速 度が高さの平方根に比例するという結果と異なってい る。これは、(6)式の中の衝撃作用時間 τ の値が,落下 高さに逆比例して減少したためである。このような現 象は,落下高さが増して着水速度が大きくなる程,着 水後の没水抵抗が増大し,衝撃エネルギーの大部分の 量が短時間に落体に作用するようになることを示して いると共に,衝撃面積の大小が減速度の大きさに著し く影響することを如実に示しているものである。

4 で述べた解析法により,実験で得られた各軸の平 均減速度積から,衝撃作用方向に対する減速度積と衝 撃変換係数およびその二乗平均値を算出し,その平均 変換係数を用いて逆算した各落下高さの減速度積(空 気抵抗を考えない)と,実験で得た平均作用時間を用 いて求めた最大減速度曲線を図-21 に示した。実際に は,作用時間に変化があるため,特に10m以上の高さ からの落下時には,図-21 の曲線で得られる値より大 きな値となることが予想される。作用 時間の変化は,直立および倒立に比し 斜立の際に著しい。

5.4 没水深度

落下着水後の没水深度は,平面的に 着水すればする程少ないが,衝撃減速 度は著しく大きくなる。斜立試験で は,深さ3mの水槽底部に落下ダミー の接触がなかったが,直立および倒立 試験の際には僅か3mの落下高さの試 験時に接触した。この結果は,着水面 積の小さい直立や倒立の姿勢では,落 下高さと同程度の深さまで水没するこ とを示している。

人体の場合は,着水後に姿勢を変化 し得ようから,ダミーのこのような現 象がそのまま適応され得ないであろう が,衝撃減速度を極力小さくしようと 思えば,当然没水深度が大きくなるも のと考えられることから,没水後の人 間の耐久力や浮上能力等から再検討の 要があろう。

5.5 救命胴衣装着による衝撃の変 化

直立落下時には, 救命 胴衣の 有無に よって, 落下時間および 衝撃波形に 殆

んど差異がなかった。これは、救命胴

衣程度の着水面積増加では垂下した両腕の腋下位置の 面積と殆んど差がなかったためである。

衝撃減速度は,作用時間に殆んど変化のなかった頭 部と胸部では,それぞれ14%,25%の増加をみたが, 腰部では作用時間の変化により減速度は逆に減少し た。

5.6 二次的障害からみた限界落下高さ

多くの文献調査の結果,落下衝撃を受けた人体の救 命限界は,作用時間 30 msec で 40G程度と推定され るが,作用時間が長くなると限界減速度は急速に小さ くなる。斜立落下では約 12~63 msec の作用時間で あったが,直立および倒立落下では約110~290 msec となった。これらの平均作用時間を用いて求めた 図-21から,上述の限界減速度に達する落下高さを求める と,斜立落下では頭部基準で約 1.5m,胸部基準で約 8 m,腰部基準で約 8.5mとなり,直立および倒立落

(265)

35

下では各部基準で30m以上の値となる。しかし,文献 [9],(10)によれば,30m以上の高さからの落下時で の生存例は僅か10%程度に過ぎず,それも奇蹟的なも のであるとしていることからみても,30m以上という 限界落下高さは姿勢の如何んに拘らず採用し得ない。 特に,海上では,着水後の救助可能時間を考慮する必 要から,肉体的損傷が全然ない状態で海上に浮上して いることが望まれることから,限界減速度も上述の値 より遙かに小さくなければならない。仮に,パラシュ ート開傘時の作用時間 0.5秒における減速度 8.5G を 限界とすると,各姿勢での限界落下高さは,図-21 か ら,直立落下で頭部基準10m,胸部基準14m,腰部基 準,5.5m,倒立で頭部基準4.5m,胸部基準10m,腰 部基準 6.7mとなるが,斜立落下では僅かに1m以下 となる。

各参考文献でも,救命限界は明確になし得ない。本 試験のような模型での実験値が,人体に対する限界値 設定に適用されるためには,更に医学的,物理学的に 多くの研究が必要と考える。

6. 結 び

船舶の遭難時に,時間的余裕がなく止むなく救命胴 衣等のみを身につけて船から海面上へ脱出する場合を 想定し,人体が海面着水時に如何程の衝撃力を受ける かを人体模型による落下実験で推測した。実験の結果 次の事項が明らかとなったが,多くの未知の要因がま だ残されているため,限界落下高さ等の救命という面 からの船舶設計に役立つような結論は得られなかった が,水面落下時の衝撃に対する系統的基礎資料は得ら れたと思っている。

(1) 落下高さ8m以上のときは,落体に作用する空 気抵抗を無視し得ず,抵抗係数Kを0.05以上として落 下時間や着水速度を計算してよい。

(2) ダミーの実験では,落下中に落体の姿勢が殆ん ど変化しなかったが,人体では変化を生じよう。落下 着水時の姿勢が,衝撃力に著しく作用し,ひいては脱 出員の生死を別ける場合が生ずることのあることを認 識すべきである。

(3) 落下着水時の最大衝撃減速度と衝撃作用時間と の間には重要な関連があり、これらは着水姿勢で著し く変化する。

(4) 直立および倒立落下の最大衝撃減速度は,斜立 落下時の約¹/10 であるが,衝撃作用時間は逆に5~9 倍に延びる。

(5) 斜立落下に比し、直立および倒立落下時には着(266)

水後の没水深度が大きくなり,何んらの人意的作用が なければ,落下高さと同程度の深さまで水没する。

(6) 直立落下時には,救命胴衣を付けた場合,それ がないときに比し胸部に25%の衝撃力の 増加があった。

終りに、本実験研究の結果が、医学的な研究の進展 によって、船舶の乗組員や造船設計関係者に役立つよ うになることを望んでいる。

参考文献

- 1)狼:国内外における交通安全の研究内容の紹介, 自動車技術 Vol. 21, No. 8, 1967
- 2) 吉村,並木:交通事故,ことに自動車事故死体に おける損傷,自動車技術 Vol.21, No.8, 1967
- 3)鈴木,柏谷:歩行者と自動車の衝突について、 自動車技術 Vol.21, No.9, 1967
- 4) 横堀,平嶋監修:スピードと人間工学 三田書房,1967
- 5) 大島:環境衛生学, 医歯薬出版株式会社, 1967
- 6) D. E. GOLDMAN, H. E. VON GIERKE: 衝撃
 ・振動の人体への影響, ㈱人間と技術社, 1968
- 7) 松本:衝撃の生体に及ぼす影響,防衛衛生, 第16巻,第2号,1969
- 8) R. M. Headley 他: Human Factors Responses During Ground Impact. Aerospace Medicine, Feb. 1962
- 9) R.G. Snyder: Human Tolerances to Extreme Impacts in Free-Fall. Aerospace Medicine Vol. 34, No. 8, Aug. 1963
- 10) R.G. Snyder : Human Tolerance Limits in Water Impact. Aerospace Medicine Oct. 1965