中国上海周辺における大気汚染物質の航空機観測

○畑山史郎、高見昭憲（国立環境研究所）、王団、湯大鋼（中国環境科学研究院）

1. はじめに

東アジア地域は、今後の激激な工業化に伴い、地球規模での大気環境の動向を決定する最重要地域であり、東アジアにおける飛行物の大気環境影響の研究に効果的な方法を提案する必要がある。本研究でこれまでの研究では、大規模航空機の飛行調査では、中国において大気中におけるエアロゾルおよびその前駆体の動態を把握することを目的に、中国における大気汚染物質の航空機観測を行った。本報告では、主に2002年12月〜2003年1月にかけて中国の上海周辺、寧波周辺、上海〜清島間において行われたエアロゾル、大気汚染物質の航空機観測の結果の一部を紹介する。

2. 観測

観測は上海近郊の常州を基地として行った。観測に用いた飛行機は、双発のプロペラ機 Yun12型機（中国製、図1）である。最大乗員数1700kg、（乗客数最大17人）、使用可能キャビン容積12.9m³、高度3000m・時速258km/hで、45分間の燃料の余裕を見た上での最大航続距離は1340kmである。観測時には飛行速度をほぼ180km/hに設定した。

搭載した測定器はガス測定器（オゾン、NOx、SO2）TECO 49CTI、42CTI、43CTI。

Particle size: TSI 3310A、CNC: TSI 3020、PM2.5およびPM10 samplers・北京地質科学計器、TSP・PM10・PM2.5一型、エアロゾル質量濃度：北京新技術研究所、LD-3、および電子顕微鏡分析用インターカーである。

図1 : 観測に用いたYun12型飛行機

12月28日の飛行コースは Ningbo（寧波）-Zhoushan（舟山島）-Togu-Begmo-Dongtou-（洞頭）-Wenzhou（温州） (1000m)・ (5000m)・ Dongtou (博哥)-Togu-Zhoushan - Ningboである。また、1月6日の飛行コースは Qingdao（青島）-Xuejiadao（蘇家島）-E D A - Taizhou（泰州）-Changzhou（常州）である。

3. 結果と考察

図3〜6に12月のガスおよび粒子状汚染物質の濃度を示した。いずれもSO2とNOxが相関高く、またオゾンがNOxとは逆相関を示すので、発生源近傍の汚
染質の分布を反映しているものと考えられる。
また、天気図をみると両日とも観測領域は高気圧に被われており、汚染質は下層に限定されていたものであろう。
九州大学に伊藤研究所教授のCFORSによる予測によれば、1月6日の上空でのSO2濃度は上記の測定結果とよく一致している。

図5：1月6日のガス状汚染質の変化
図6：1月6日の粒子状汚染質の化学成分
図7：12月28日および1月6日の地上天気図

また、エアロゾルの化学成分の濃度には次のような特徴がみられる。
1) PM10とPM2.5での濃度が著しく異なること、エアロゾルが微小粒子中に存在していたものと思われる。
2) トータル負イオンとトータル正イオンの比が1:1に近く、エアロゾルが発生源近傍で中和されていることを示している。これは昨年の本学会で報告した、渦海渦上空における航空機観測でもみられたことである。
3) 2)の特徴は1月6日の後半から常程での観測でもみられるが、微細にトータル正イオンの方が濃度が高い。これは腐気が中国北部から輸送されていることを反映しているものではないかと思われる。実際、図8に示した流線解析によれば、腐気は中国北部から輸送されてきていることが分かる。

図8：1月6日の流線（NOAA HYSPLIT）