1. 目的 ビール酸化臭の原因物質の一つであるT-2-Nonenal(T2N)は、保存中に起こる酸化反応により生成されるものと考えられる。一方、ビール保存中に増加するT2Nは、麦汁中のT2Nが発酵中に亜硫酸結合体を形成し、結合体としてピールに移行後、保存中に亜硫酸が減少し平衡が崩れる事により現れるという報告もある。我々は、ビール保存中に生成するT2Nが麦汁由来であるかどうかの検討を行ったので報告する。

2. 方法 結合体の形成は、重水にT2N、亜硫酸カリウムを加え、NMRにて追跡した。T2Nの定量は、ガスクロマトグラフを用いたHPLC法により行い、結合体からT2Nの遊離は酸化水素により亜硫酸を酸化後、30℃保存によるT2Nの増加で測定した。また、C14T2Nを麦汁に添加し、発酵中のT2Nの動向を調べた。

3. 結果 T2Nは過剰の亜硫酸が存在すると結合体を形成する事がある。結合体形成率は両物質の濃度比に依存し、T2Nの100倍程度の亜硫酸が存在すると、95%程度が結合体となる。C14T2N添加発酵試験の結果、C14の大部分は酵母から検出され、ビールに移行したのは全体の数%だった。また、結合体を添加後、亜硫酸酸化により遊離したT2Nは、添加した結合体の10%以下であり、その他は二重結合に水和が起こっていることが示唆された。

以上より、麦汁中のT2Nは、その多くが酵母に代謝され、かつ、ほとんどの結合体はT2Nを遊離しない。麦汁中のT2N濃度が0.8〜1ppb、ビール保存により増加するT2Nが0.2〜0.4ppbである事を考え合わせると、ビール保存中に増加するT2Nは、麦汁由来ではなく、酸化反応により生成することを示す。

Pirole Yeastによるフルフラールの変換

【1】目的 ビール酵母代謝機能研究の一環として、ビール成分であるフルフラールに着目し、ビール酵母によるフルフラールの変換反応作用を検討した。更に、ビール醸造工程中、酵母変換反応が進行していると考え、ビール抽出物の分析を行い、ビール中にフルフラール酵母変換物が存在していることを確認した。

【2】方法 ビール酵母（下面発酵酵母）10gを10%蒸発水溶液150mlに加えて1時間摂拌後、フルフラール0.01molを添加した。3日間改変後、反応液を酢酸エチルで抽出し、単離精製後、変換化合物の構造を決定した。また、変換化合物をi-乳酸メチルより立体選択的に合成し立体構造を確認した。更に、冷麦汁、下ろしビール、及び製品ビールを酢酸エチルで抽出した後、GC-MS分析を行った。変換化合物の定量分析を行った。

【3】結果 ビール酵母は、フルフラールを主還元体であるフルフラールアルコール以外に、(1S,2S)-1-(2-Puryl)propane-1,2-diolに変換することを見出した。また、変換反応途中で、1-(2-Puryl)propane-2-keto-1-olを中間体として単離したことより、当該ジオール体は、フルフラールのフルーティにアセチル基がアシロリン型に結合した後、この縮合体が還元されて生成した化合物であると考察した。更に、当該ジオール体は、冷麦汁中には存在せず、下ろしビール、製品ビール中に20〜50ppb存在することが判明した。従って、本成分は、麦汁発酵過程において、麦汁中のフルフラールが酵母変換され、生成したものと推定される。

Conversion of Furfural by Brewer’s Yeast

Naoki Mochizuki, Shin-ichi Matsui, Nobuo Uemitsu and Katsuaki Kitabatake
(Applied Technology Research Laboratory, Asahi Breweries, Ltd.)