コンクリートの中性化と透気性

正会員〇豊 井 昭夫（日本大学工学部）
正会員 松 井 勇（日本大学工学部）
長 野 基 司（日本大学工学部）

1. まえがき

鉄筋コンクリート構造物の耐久性は、コンクリートの中性化とこれに伴う鉄筋の腐食によって支配される。中性化は空気中の炭酸ガスのコンクリートへの拡散が起因となり、鉄筋の腐食速度は酸素の到達度に比例すると考えられる。これらは、いずれもコンクリートへ浸入する気体の量によるもので、コンクリートの透気性と密接な関係を有している。

コンクリートの透気性の試験はいくつか報告されているが、コンクリートの透気性と中性化との関係は明らかにされていない。

2. 実験方法

（1）使用材料 セメントは普通ポルトランドセメント、粗骨材は川砂石を25mm以下、細骨材は川砂石25mm以下である。

（2）コンクリートの調合

コンクリートはレデミクストコンクリートにえた。調合を表1に示す。

（3）供試体 コンクリート供試体は、100×100×400mmの試験体を打設した。供試体の個数は同一調合のコンクリートについて3個とし、このうち1個は中性化試験、2個は簡易透気試験に供した。これら供試体はいずれも所定の材令で、図1に示すように供試体側面を2液型エポキシ樹脂塗料を用いてシールした。

（4）養生方法 供試体の養生方法は、図2に示すように、材令7日まで湿気中で養生を行い、脱型後、供試体側面をシールし、その後材令3ヶ月まで室内空気中養生を行った。

（5）試験方法

a）中性化促進試験 所定の養生を終了した供試体（中性化試験用供試体）を室温85%、温度30℃に静置した。コンクリートの

－189－
中性化深さは、中性化促進期間1、2および3ヶ月目に供試体の一方の端部から約8cmの箇所を割れずし、その断面にフェノールフタレイン1滴アルコール溶液を顕微鏡により敷布し、図-3に示す位置を測定した。中性化深さを測定した供試体は、割れずしした断面に前述の塗料を塗布し、促進試験室にて再度静置した。

b）簡易透気性試験方法 供試体は、中性化試験用供試体と同様に、中性化促進試験室にて静置し、中性化深さ試験と同時に、簡易透気性試験を行った。簡易透気速度の測定位置は図-4に示す4箇所とし、2個の供試体について試験し、平均値を用いた。

簡易透気性試験装置図を図-5に示す。これを用いて、以下の手順で試験した。
1）供試体に直径5mm、深さ40mmの孔を電気ドリルであけ、穴の内面に塗ったコンクリート粉を除去する。
2）この穴を直径5mm、長さ10mmのゴム栓で栓し、空気を換えないようにコーピング材を用いて、穴の周りをシールする。
3）ゴム栓の中央部に塗膜用注射針をゴム栓を貫通するまで差し込む。このとき、注射針の穴にゴム栓が詰まることがあるので、予め細い針金を注射針の穴に貫通させておくゴム栓を詰まらないようにする。
4）この注射針に塗膜化ビニル製ホースを取付け、3方コックを開いた状態で、ハンドバキュームポンプを用いて、コンクリートにあてた穴の内部の空気を抜き取り、真空計の水銀柱の高さが100mmHgとなったとき、コックを閉じる。
5）するとコンクリート内外の空気圧が穴の穴に集まり、穴の真空度が低下し、真空計の水銀柱が上昇する。このとき、水銀柱の高さが120mmHgから160mmHgまで40mmHg上昇する時間をストップウォッチで計る。

コンクリートの簡易透気速度は（1）式により求められる。

\[k = \frac{40 \text{mmHg}}{T} \] （1）

ここで、\(k \)：コンクリートの単位時間（mmHg/sec）、\(T \)：真空計の水銀柱の高さが40mmHg上昇する時間（sec）

表-2 試験結果

| 供 試 体 名 | 透気速度 (
<table>
<thead>
<tr>
<th></th>
<th>[mmHg/sec])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>平均</td>
</tr>
<tr>
<td>45-8-AE</td>
<td>328</td>
</tr>
<tr>
<td>45-20-AE</td>
<td>320</td>
</tr>
<tr>
<td>55-8-AE</td>
<td>274</td>
</tr>
<tr>
<td>55-8-PLAIN</td>
<td>275</td>
</tr>
<tr>
<td>55-20-AE</td>
<td>279</td>
</tr>
<tr>
<td>55-20-PLAIN</td>
<td>286</td>
</tr>
<tr>
<td>65-8-AE</td>
<td>176</td>
</tr>
<tr>
<td>65-20-AE</td>
<td>227</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
中性化促進速度と簡易透気速度との関係

（4）中性化促進期間と簡易透気速度との関係

中性化促進期間と簡易透気速度との関係を図-9に示す。簡易透気速度は中性化促進期間が長くなるほど大きくなってい
ている。筆者らの研究によると、簡易透気速度はコンクリートの含水比によって影響を受け、含水比が小さい程、簡易透気速度が大きくなる傾向を示している。そこで、これらの供試体の促進中性化前の質量と促進期間2ヶ月の質量を比較すると、わずか0.2%程度の誤であり、両者の含水比の差は極めて小さく、中性化すると差は簡易透気速度が大きくなる。

簡易透気速度とセメント比との関係は、セメント比が小さくなるほど、簡易透気速度は小さくなり、セメント比65%の簡易透気速度に比べ、セメント比55%および45%は约0.3倍となっている。

またセメント比65%のAEコンクリートについては、スランプ8cmの方がスランプ20cmに比べ簡易透気速度が大きくなっている。AEコンクリートとプレーンコンクリートではAEコンクリートの方が簡易透気速度は若干大きくなっている。

（5）簡易透気速度と中性化深さとの関係

簡易透気速度と中性化深さとの関係を図-10に示す。両者の関係は、両対数座標上で直線となり、これらの直線は促進期間によってほぼ平行となっている。これにより、簡易透気速度が大きくなるに従い中性化深さは大きくなるが、この傾向は促進期間によって異なることを示してい。これらの直線式を求めると（2）式のようにになり、これより、各直線の実験定数を求めると、aは促進期間すなわち材令によって異なり、bは促進期間に関係なく一定値で示すことができる。

この図中に前報の比較的マッピングをコンクリートを用いた結果を示す（図中の×印）と、これらの関係はほぼ直線となり、しかも直線の傾きす、今回の直線と同様の勾配を示している。

4. むすび

コンクリートの調合を変えた供試体を用いて、中性化促進試験を行い、簡易透気速度と中性化との関係について試験した結果を要約すると次のようである。①コンクリートの中性化深さは、中性化促進期間が長くなるほど大きくなる。②コンクリートの中性化深さは低水セメントでは大きさき。③簡易透気速度は中性化深さが大きくなるに従い大きくなる。④同一中性化促進期間においては、簡易透気速度と中性化深さとの関係は、両対数座標上で直線を示す。また、この直線の傾き（係数b）は促進期間に関係なく一定ととなり、切片（係数a）は促進期間が長くなる程大きくなる。

謝辞 本研究の中性化促進試験を行うに当り、住宅都市整備公団福士洋氏のご協力を得た。ここに感謝の意を表します。

参考文献
1) 笠井芳夫、松井勇、編著、コンクリートの簡易透気性試験方法、第5回コンクリート工学年次講習会、講義論文集 pp.57-60、1983。
2) 笠井芳夫、建築におけるコンクリートの耐久性の考え方－透気性を主題として－、第34回コンクリート調査会オーガスト、pp102-117、1983.2。
3) 笠井芳夫、松井勇、セメントの透気性に関する試験、セメント・コンクリート、№.436、June、pp.8-15、1983。