論文 杭主筋を基礎に定着しない杭頭接合部の構造性能

安田 慎**・小室 努**・辰濃 進**・川端 一三**

要旨：杭頭部の回転剛性を制御するため杭頭部を円錐状に成形し、杭主筋を基礎に定着しない場所打ち鉄筋コンクリート杭について、その構造性能を把握するために大型模型実験を実施した。試験体は計5体で、それぞれ杭頭ディテールを変化させ、また、異なる軸力の杭頭回転性能を確認する目的で、5または4レベルの軸力（杭頭接面応力0～20N/mm²）を変化させた。実験の結果、本接合方式の杭頭モーメント－回転角関係は最終安定した履歴性状を示すとともに、杭頭モーメントは低減され杭頭部の損傷を軽微に抑えられることを明らかにした。

キーワード：場所打ちRC杭、主筋非定着、杭頭固定度、異形PC鋼棒、芯鉄筋

1. はじめに

これまでに筆者らは、場所打ち鉄筋コンクリート杭の主筋を基礎に定着しない杭の開発を行っており、1998年に実施した実験によりその有用性を確認し、既に実施適用している。この杭頭接合法は、地震時の杭頭部に生じる応力を従来（剛接合）より半分程度に低減できるため、杭体の変形性能の向上および基礎梁・基礎マットの合理化が可能となっている。

本研究では、杭主筋を基礎に定着しない杭について、さらに杭頭部の回転剛性を制御するため杭頭部を円錐状に成形した杭頭接合部の構造性能を把握するために構造実験を実施した。本報ではその実験結果について述べる。

2. 実験計画

2.1 試験体

表1-1に試験体一覧を、図1-1に各試験体の杭頭ディテールを示す。図2-1に試験体の配筋図を示す。試験体は長さ3m、直径φ500の場所打ち鉄筋コンクリート杭で、せん断補強筋に高強度異形PC鋼棒（SBPD1275/1420）を使用した。いずれの試験体でも、杭頭の回転性能を高めるとともに地震時の杭頭部の圧壊を防止するため

*1大成建設（株）技術センター（正会員）
*2大成建設（株）構造設計部（正会員）
に、杭頭部を円錐状に成形し、軸力が杭頭部に作用させる断面力を2:1とするようにしている。

試験体数は5体で、それぞれ杭頭部に変形を変化させた。No.1は、杭頭と杭基礎を接触するのみとした。No.2は、杭に引張力が生じる場合を想定し、鉄筋を杭頭部に設け、試験体を配置して基礎側に定着させた。No.3は、杭頭部がせん断伝達能力を高めるために、No.3は杭頭部を杭基礎へ25mmの間隔をもって、No.4はダボ形状で、No.5は、杭頭部の回転性能を高めるために、杭軸に周囲に位置を変更してアンボンド処理し、両端部に定着板を設けた。

2.2 使用材料および製作方法

表2に使用した材料の機械的性質を、表1にコンクリートの材料試験結果を示す。杭軸部のコンクリート強度（室温強度Fc30）に対し、杭頭部（基礎面から110mmの範囲）のコンクリート強度は、杭軸に設けた杭頭部を杭基礎へ25mmの間隔をもって、杭軸に周囲に位置を変更してアンボンド処理し、両端部に定着板を設けた。

2.3 加力方法

図3に加力装置を示す。杭体と基礎の位置関係を逆にした状態で試験体をセットし、試験体杭最上部を杭先端とした。試験体の実験時の応力状態を、地震時杭の応力状態を模擬することを目的として、杭先端（反力ブロック）を杭軸支持し、杭長中間部（加力ブロック）にせん断力を作用させた。加力は、一定軸力下における正負載荷により試験体を載荷する。載荷1では、加力ブロックの杭先端（反力ブロック）を杭基礎へ25mmの杭頭部に設け、載荷2では、杭頭部に載荷する。載荷体が反力ブロックにより与え、加力を一定に保持することで試験体載荷を行った。

表2 鋼筋の機械的性質

<table>
<thead>
<tr>
<th>種類</th>
<th>鋼種</th>
<th>鉄筋強度 (N/mm²)</th>
<th>軸力 (％)</th>
<th>使用個所</th>
</tr>
</thead>
<tbody>
<tr>
<td>D13</td>
<td>SD930</td>
<td>447</td>
<td>662</td>
<td>14.0</td>
</tr>
<tr>
<td>D16</td>
<td>SD685</td>
<td>575</td>
<td>972</td>
<td>8.8</td>
</tr>
<tr>
<td>U15.1</td>
<td>SBPD1275/1420</td>
<td>1453</td>
<td>1453</td>
<td>8.7</td>
</tr>
<tr>
<td>φ17</td>
<td>SBPR1080/1230</td>
<td>1176</td>
<td>1268</td>
<td>13.0</td>
</tr>
</tbody>
</table>

表3 加力サイクルと軸力

<table>
<thead>
<tr>
<th>載荷1</th>
<th>載荷2</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>R</td>
</tr>
<tr>
<td>N/mm²</td>
<td>rad.</td>
</tr>
<tr>
<td>1</td>
<td>1~2</td>
</tr>
<tr>
<td>2~3</td>
<td>3~4</td>
</tr>
<tr>
<td>4~5</td>
<td>5~6</td>
</tr>
<tr>
<td>6~7</td>
<td>6~8</td>
</tr>
<tr>
<td>8~9</td>
<td>9~10</td>
</tr>
<tr>
<td>10~11</td>
<td>11~12</td>
</tr>
<tr>
<td>12~13</td>
<td>13~14</td>
</tr>
<tr>
<td>14~15</td>
<td>15~16</td>
</tr>
<tr>
<td>16~17</td>
<td>17~18</td>
</tr>
<tr>
<td>18~19</td>
<td>19~20</td>
</tr>
<tr>
<td>20~21</td>
<td>21</td>
</tr>
<tr>
<td>22~23</td>
<td>23</td>
</tr>
<tr>
<td>24~25</td>
<td>25</td>
</tr>
</tbody>
</table>

σ: 接触面の応力。 () 内は軸力の応力を示す。
※1: No.3およびNo.2の杭
※2: No.1およびNo.3は自重を含めNo.1を載荷。
No.2. 4. 5は自重分ののみ（σ=0.5N/mm²）を負荷。
3. 実験結果
3.1 荷重-変形関係および破壊性状
図-4に杭頭部に作用するせん断力Q_i-部材角R_i関係を示す。載荷1における$Q_i - R_i$関係に関しては、各試験体ともに曲げ降伏型の履歴性状を示し、図-7に示す包絡線においても試験体間で大きな差は見られなかった。
図-5にNo.1,2の杭頭応力σ=10N/mm2, R_i=1/50時のひび割れ発生状況を示す。ひび割れなどの諸現象発生順序は、各試験体ともに同様の傾向を示した。杭頭応力σ=10N/mm2の処女載荷において、加カブロック下部（杭頭側）では、部材角R_i=1/400でせん断ひび割れに先行して曲げひび割れが発生し、R_i=1/200で加カブロック近傍の主筋が引張降伏し、次いでR_i=1/100で加カブロック上側のコンクリートが圧壊した。

図-4 せん断力-部材角関係（載荷1）
図-5 載荷1破壊状況
図-6 拉開部のモーメント-回転角関係（載荷1）
杭頭部には、いずれの試験体も曲げひび割れは発生しておらず損傷を軽微であったが、芯鉄筋を有するNo.2、No.4の杭頭部には、杭頭応力10N/mm²の$R_1=1/50$で材軸方向に若干の縦ひび割れが発生した。この縦ひび割れは基礎スタブと接触していない側に発生している。これは、芯鉄筋（ダボ鉄筋）が伝達するせん断力に対応する反力（引き戻す力）が杭頭部に作用したためと考えられる。

せん断力の入力を大きくした載荷2においても、各試験体ともに杭体はせん断破壊せず、接合面のすべりの有無が実験最終状態であった。
なお、いずれの試験体も実験終了後の基礎スタブの杭頭部の接触面には、若干のくぼみ（1mm程度）が観察された。

3.2 杭頭部の曲げモーメント−回転角関係
図-6に杭頭部の曲げモーメントM_1−回転角θ関係を示す。図-8に杭頭応力$\sigma=10N/mm²$の処女載荷における各試験体の図を示す。図中の破線は、後述する最大耐力の計算値である。杭頭回転角θは、杭対面2点の鉛直相対変位（杭の押込み、引抜き量）の差を測定スパンで除して求めた。基礎と接触するのみのNo.1は、履歴ループ面積を持たない非線形性の履歴性状を示し、その除荷経路は載荷経路をもとに戻ることを示した。芯鉄筋を有するNo.2はNo.1と比較して大きな杭頭モーメントが作用しており、また履歴ループは面積を持っている。杭頭部を基礎にのみ込ませたNo.3は、No.1とほぼ同様の履歴性状を示し、ダボ鉄筋を有するNo.4は、No.1とNo.2の中間的な履歴性状を示した。No.5の杭頭回転角$1/30$を超える載荷を行ったが、耐力を低下は見られず、安定した履歴性状を示した。芯鉄筋をアンボンド処理したことで、No.2よりも同一回転角に対する杭頭モーメントは若干低くなっている。

図-9に既報1)の試験体と比較した$M_1−\theta$関係を示す。縦軸の杭頭モーメントは$N\cdot D/2$（N:軸力, D:杭径）で除すことで無次元化している。図-10に既報1)の杭頭形状を示す。PL-2は

!図-7 $Q_1 − R_1$関係（包絡線）

!図-8 $M_1 − \theta$関係（包絡線）

![図-9 $M_1 − \theta$関係（既報1)との比較）](図-9 $M_1 − \theta$関係（既報1)との比較）

![図-10 既報1)の試験体(PL-2,5)](図-10 既報1)の試験体(PL-2,5)
杭主筋を基礎に定着させた従来の接合形式であり、PL-5は杭主筋を基礎に定着させず、杭頭部を基礎にのみ入らせる試験体である。杭主筋を基礎に定着しないことで、杭頭モーメントは半分程度に低減され、さらに杭頭部を円錐状に成形することで杭頭部の回転変形性能が大きくなくなっていることがわかる。

3.3 杭頭接合部のすべり挙動

表-4に杭頭接合部のすべり発生時（破壊時）の一覧表を示す。No.1は、載荷1および載荷2の低軸力負荷時にすべりが発生した。すべり発生時の摩擦係数(Q/N)は載荷1:0.80, 載荷2:0.71であった。芯筋を有するNo.2,5にすべりは発生していない。杭頭部を基礎にのみ入らせるNo.3は、載荷2の軸力=0の加力時に杭頭のうち部分がテーブに沿ってすべりつつすべりを生じた。テーブ傾斜方向におけるすべり発生時の摩擦係数は0.78であった。

表-5にNo.4のダボ鉄筋による伝達せん断強度を計算値と実験値の比較を示す。ダボ鉄筋を有するNo.4は、軸力=0の加力時に杭頭端部のせん断補強筋が破断し、ダボ鉄筋のうち部分における杭頭コンクリートが破壊した。これにより、接触面近傍のせん断補強筋（3巻き分）の負担できるせん断抵抗力Qsdよりも杭頭に作用するせん断力が大きくなったためである。なお、下記に示す(2)式で求められる鉄筋のダボ作用による伝達せん断力Qdは、実験時でのせん断力よりも十分に大きく、実験終了後の杭頭部の観察では、ダボ鉄筋の変形は見られなかった。

\[Q_{d} = 2 \cdot n_{1} \cdot a_{1} \cdot \sigma_{s} \]
\[Q_{d} = 1.3 \cdot n_{0} \cdot d_{t} \cdot \sqrt{F_{c} \cdot \sigma_{s}} \]

ここで、n1:接触面近傍のせん断抵抗を有効なせん断補強筋の本数, \(\sigma_{s} \): せん断補強筋の降伏点（N/mm²）, \(a_{1} \): せん断補強筋の断面積（mm²）, \(d_{t} \): 芯筋の径（mm）, \(n_{0} \): 芯筋の本数, \(F_{c} \): コンクリート強度（N/mm²）, \(\sigma_{s} \): 芯筋の降伏点（N/mm²）

No.2,5に杭頭破壊が起こらなかったのは、芯筋が定着されている場合、コンクリート接触面には軸力に加えて曲げによる圧縮力が加わるため、せん断力よりダボ作用ではなく摩擦抵抗により伝達されたためである。

4. 杭頭固定度

本研究開発の主目的は杭頭の回転自由度を従来よりも高めることであるが、これを評価するために(3)式で算出した杭頭固定度\(\alpha \)（杭頭モー
メント低減率）により比較を試みる。

\[\alpha = \frac{M_i}{M_c} \] \hspace{1cm} (3)

ここで、\(M_i \)：杭頭モーメント実験値(kN·m),
\(M_c \)：杭頭固定時杭頭モーメント理論値(kN·m),
\(M_i = 3 \cdot P \cdot L/16 \) (載荷 1), \(M_c = 21 \cdot P \cdot L/128 \) (載荷 2),
\(P \)：載荷点荷重(kN), \(L \)：杭長(=3.0m)

\(M_c \)は弾性時の理論値であるため、部材角が大きくなり部材が塑性化すると実験値との単純な比較はできないが、図-11に示す杭頭応力 \(\sigma = 10 \text{N/mm}^2 \) 時の \(\alpha \) は、いずれの試験体も \(\alpha = 0.4 \sim 0.7 \) 程度に低減されていることがわかる。

5. 最大耐力に関する検討

表-6に載荷 1、杭頭応力10N/mm²時の処女載荷における最大せん断力と計算値との比較を示す。曲げ耐力の算定では、加力ブロック上端に塑性ヒンジが形成された状態を最終崩壊形として、e関数法から求めた曲げ終局モーメントから曲げ降伏時のせん断力を求めた。せん断力 \(Q_i \) の実験値/計算値は0.98〜1.04と良く一致している。

杭頭の終局曲げモーメントの算定には、杭主筋は無視してコンクリート断面（および応力鉄筋）のみを有効とし、また、コンクリート強度は支圧効果を考慮してシリンダー圧縮強度の2倍の値（2σ₝）を用いて求めた。表-6に最大杭頭曲げモーメント実験値と計算値の比較を示す。

表-6 最大耐力

<table>
<thead>
<tr>
<th>試験体</th>
<th>実験値</th>
<th>計算値</th>
<th>実験値</th>
<th>計算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>貯存値</td>
<td>kN</td>
<td>kN</td>
<td>kN·m</td>
<td>kN·m</td>
</tr>
<tr>
<td>No.1</td>
<td>343</td>
<td>332</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>No.2</td>
<td>399</td>
<td>384</td>
<td>1.04</td>
<td>2.24</td>
</tr>
<tr>
<td>No.3</td>
<td>342</td>
<td>341</td>
<td>1.00</td>
<td>1.56</td>
</tr>
<tr>
<td>No.4</td>
<td>358</td>
<td>345</td>
<td>1.04</td>
<td>1.78</td>
</tr>
<tr>
<td>No.5</td>
<td>390</td>
<td>398</td>
<td>0.98</td>
<td>2.24</td>
</tr>
</tbody>
</table>

表-6に載荷1：2.9〜3.2、載荷2：1.4〜1.6であり曲げ降伏型の試験体である。

6. まとめ

本実験から得られた知見を以下に要約する。

(1) 杭頭部を円錐状に成形し、杭主筋を基礎に定着しない杭において、杭頭部は安定した履歴性状を示し、杭頭回転角1/30を超えても耐力低下せず、優れた回転性能を有する。

(2) 杭頭部を円錐状に成形し、杭主筋を基礎定着しないことにより、杭頭部に作用する曲げモーメントは低減され、杭頭部の損傷を軽微に抑えること、杭頭部の圧壊を防止することができる。

(3) 杭頭部コンクリートと基礎コンクリートの接面の摩擦係数は0.8程度であった。

(4) 杭頭部の最大曲げ耐力において、支圧効果を考慮してコンクリート強度をシリンダー圧縮強度の2倍の値を用いた場合のe関数法による計算値は実験値と良い対応を示した。

参考文献

1) 是永健好ほか：異形PC鋼棒で複査強した場所打ちRC杭の大型模型実験、コンクリート工学年次論文報告集、Vol.21, No.3, pp.475-480, 1999

2) 日本建築学会：鉄筋コンクリート造物の耐震性保証型耐震設計指針（案）・同解説、1997

3) 塩原等：コンクリートとコンクリートの接合、コンクリート工学 Vol.34, No.6, 1996.6