論文 耐震壁中間梁のせん断強度に及ぼす梁断面形状の影響

姜 優子*1・江崎文也*2・小野正行*3

要旨：せん断破壊の恐れがある耐震壁中間梁の応力状態に近似できる中間梁要素試験体を用いて、梁断面幅が壁厚より大きい場合と壁厚と同じ場合のせん断実験を行い、梁断面形状が中間梁のせん断強度に及ぼす影響を検討した。その結果、中間梁の梁断面形状に関わらず、ほぼ同様な履歴曲線が得られ、中間梁の主筋量およびあら筋量が同じであれば、梁幅の大小に関わらず、ほぼ同様なせん断強度となることがわかった。

キーワード：連層耐震壁、中間梁、せん断破壊、せん断強度、梁断面形状

1. 序

耐震壁付帯ラーメン中間部材の応力が再現できる要素試験体を用いて行ったせん断実験によれば、中間部材のせん断強度は、主筋強度に最も影響を受け、あら筋には主筋ほどの効果がみられず、せん断強度を大きくするには主筋強度（=$a_k\sigma_{te}$、a_k：主筋総断面積、σ_{te}：主筋降伏点強度）を増大することが最も効果的であることがわかった*1*2。これらの結果によれば、連層耐震壁の中間梁については、梁主筋強度を増大すれば、梁幅が壁厚と同じであってもせん断強度が増大することが予測されると考え、梁幅が壁厚と同じ場合の実験を計画した。本論文は中間梁のせん断強度に及ぼす梁断面形状の影響を明らかにするために行った実験およびFEM解析の結果について述べるものである。

表 1 試験体一覧

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Section (mmxmm)</th>
<th>Longitudinal Reinforcement</th>
<th>Transversal Reinforcement</th>
<th>Thickness (mm)</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>I30-0.7-0.3-0</td>
<td>200x200</td>
<td>4-D10 ($p_t=0.7%$)</td>
<td>D6@100mm ($p_w=0.32%$)</td>
<td>100</td>
<td>D6@100mm single layer</td>
</tr>
<tr>
<td>I30-1.2-0.3-0</td>
<td>200x200</td>
<td>4-D13 ($p_t=1.2%$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I30-2.0-0.3-0</td>
<td>100x200</td>
<td>6-D13 ($p_t=2.0%$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW32-1.4-0.6-0</td>
<td>100x200</td>
<td>4-D10 ($p_t=1.4%$)</td>
<td>D6@100mm ($p_w=0.64%$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW32-2.4-0.6-0</td>
<td>100x200</td>
<td>4-D13 ($p_t=2.4%$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW32-4.0-0.6-0</td>
<td>100x200</td>
<td>6-D13 ($p_t=4.0%$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p_t=$longitudinal reinforcement ratio, $p_w=$transversal reinforcement ratio, $p_s=$wall reinforcement ratio

*1 近畿大学大学院 産業技術研究科造形学専攻 修士（工学）（正会員）
*2 九州共立大学教授 工学部建築学科 博士（工学）（正会員）
*3 近畿大学教授 九州工学部建築学科 博士（工学）（正会員）
2. 実験概要

2.1 試験体

図2に試験体形状を、表1に試験体一覧を示す。試験体の壁筋比、いずれの試験体とても0.32%である。試験体にはI(W)f-b-c-dの記号を付けている。Iは梁幅が壁厚の2倍、Wは梁幅が壁厚と同じ、fはコンクリートシリンダ圧縮強度の値(MPa)、bは主筋比の値(%)、cはあわら筋比の値(%)、dはスラブによる拘束の有無をそれぞれ示している。なお、本実験では、スラブによる拘束が作用しないようにしているので、d=0で示している。表2に、使用した材料の力学的性質を示す。

2.2 加力方法および測定方法

図2に示す加力装置を用いて、剛な梁の間に挟み込んだ上下のくさびを圧縮すれば、上下の壁板隅角部を結ぶ斜め45°の破壊面が形成され、中間梁中央部が直接せん断破壊を起こすものと考えられる。中間部材には耐震壁に正負繰り返し水平力が作用すると、斜めせん断ひび割れが交差して生じる。一向方向単調載荷の場合には交差したひび割れ生じないが、耐震壁の耐震力に及ぼす正負繰り返しの影響はオープンフレームの柱梁の場合よりも小さいものと考え、一向方向単調載荷により実験を行うこととした。また、測定方法は図2に示す高感度変位計により、中間梁の水平(材軸と直角方向)および鉛直(材軸方向)の各変形を測定した。また、図2.1に示すように、想定破壊線位置にゲージを貼付して、鉄筋のひずみを測定した。万能試験機によりおよそ1.6kN/secの載荷速度で連続的に荷重を載荷し、荷重、変形および鉄筋のひずみの測定は、0.1secのサンプリング間隔で動ひずみ測定器によりパソコンに記録した。また、ひび割れおよび破壊状況については、目視、写真撮影およびビデオカメラ等により記録した。

3. 実験結果

3.1 破壊状況

表2 材料の力学的性質

（1）コンクリート

<table>
<thead>
<tr>
<th>Specimen</th>
<th>σ_b</th>
<th>E_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I30-0.7(1.2,2.0)-0.3-0</td>
<td>29.5</td>
<td>24.1</td>
</tr>
<tr>
<td>IW32-1.4(2.4,4.0)-0.6-0</td>
<td>31.6</td>
<td>23.2</td>
</tr>
</tbody>
</table>

σ_b: シリンダ圧縮強度(MPa)

E_c: ヤング係数(GPa)

（2）鉄筋

<table>
<thead>
<tr>
<th>Bar</th>
<th>a</th>
<th>σ_y</th>
<th>σ_u</th>
<th>E_y</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6</td>
<td>0.32</td>
<td>371</td>
<td>504</td>
<td>197</td>
<td>11.5</td>
</tr>
<tr>
<td>D10</td>
<td>0.71</td>
<td>375</td>
<td>528</td>
<td>178</td>
<td>21.6</td>
</tr>
<tr>
<td>D13</td>
<td>1.27</td>
<td>354</td>
<td>486</td>
<td>185</td>
<td>21.5</td>
</tr>
</tbody>
</table>

a:断面積(cm²), σ_y:降伏点(MPa)

σ_u:引張強度(MPa), E_y:ヤング係数(GPa), ε:伸び(%)
図 - 3 水平荷重 Q - 中間梁材材角 R，中間梁軸方向平均ひずみ $ε_o - R$ との関係および実験終了時の破壊状況

I30-2.0-0.3-0 主筋 $ε_o(%)$

I30-2.0-0.3-0 あばら筋 $ε_o(%)$

I30-2.0-0.3-0 壁縦筋 $ε_o(%)$

図 - 4 水平荷重 Q - 主筋のひずみ $ε_o$，あばら筋のひずみ $ε_o$ および壁横筋のひずみ $ε_o$ との関係の一例

- 585 -
履歴曲線は、梁断面の形状にかかわらず同様である。主筋が小さい試験体では、初期ひび割れが拡幅するが、主筋が大きい試験体になると、ひび割れが分散する傾向が見られる。梁断面の形状にかかわらず、ほぼ同様な破壊性状が見られた。梁の軸方向平均ひずみ履歴曲線によれば、部材角の増大とともに引張ひずみが徐々に増大していることから、中間梁が斜め引張破壊を起こし、壁筋と主筋が斜めひび割れの広がりに対抵抗する機構が形成されたものと判断される。いずれの実験シリーズとも連層耐震壁の実験結果から観察された中間梁のせん断破壊に極めて類似した破壊性状を示していることから、本実験で計画した要素試験体を用いて耐震壁中間梁のせん断強度を検討できると思われる。

図-4に、水平荷重Qと主筋のひずみεgs、あら筋のひずみεnおよび壁縁筋のひずみεnとの関係の一例を示す。これらによると主筋および壁縁筋は、ひび割れ後急激に引張ひずみが生じ、水平荷重が最大になる前に降伏していることがわかる。このことから、主筋が載荷荷重に対して有効に抵抗していることがわかる。しかし、あら筋はひび割れ後、引張ひずみが大きくなっているが、降伏ひずみまで達していないものもあり、壁縁筋の抵抗はしていないようである。

3.2 強度性状

主筋強度が増大すると最大水平荷重が上昇する傾向が見られるが、最大水平荷重に及ぼす梁断面形状の影響は見られなかった。これは中間梁がせん断力のほか、主に壁板の応力が拘束する抵抗機構を形成しているため、せん断ひび割れ後の広がりに対する材軸方向の抵抗要素が主に主筋であることから、強度に及ぼす中間梁コンクリート断面積の影響がほとんど見られなかったと思われる。荷重-中間梁部材角の履歴曲線によれば、いずれの試験体ともRが2%近傍では荷重が維持されていることから、材軸方向の降伏により耐力に達していることが考えられる。そこで、図-5に示す水平せん断強度時の応力から、(1)～(3)式を用いて軸方向力を求め、表-3に計算した結果を示した。

\begin{align}
Q_n &= N_s = P_s / \sqrt{2} \\
Q_n &= Q_n + Q_s \\
N_s &= N_s + N_n
\end{align}

ここで、

\begin{align}
P_s &= \text{最大荷重} \\
Q_n &= \text{最大水平荷重} \\
N_s &= \text{梁せん断強度} \\
N_n &= \text{梁軸方向力} \\
Q_s &= \text{壁縁筋強度 (a_1 \sigma_{as} = a_1 1.92cm^2)} \\
N_s &= \text{壁縁筋強度 (a_1 \sigma_{as}, a_2 \sigma_{as} = a_{1.28cm^2})}
\end{align}

表-3によれば、主筋比が最も小さい試験体は実験値のN_sが算定値N_sを超えN_sに近いことから、主筋が小さい試験体は軸方向力で強度が決まっているものと思われる。一方、主筋が多様になると算定値N_sまで達していなかった。梁幅が壁厚と同一場合には、断面積が停止していることから、せん断破壊を起こしているものと考えられ、主筋強度を高くする場合には、大変形時の履歴性状に梁断面形状の影響が見られるようである。

4. FEM解析

4.1 解析概要

本解析では、解析コードとして汎用FEM解
表-3 実験結果一覧

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Experiment</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First crack</td>
<td>Maximam</td>
</tr>
<tr>
<td>I30-0.7-0.3-0</td>
<td>136</td>
<td>0.02</td>
</tr>
<tr>
<td>I30-1.2-0.3-0</td>
<td>124</td>
<td>0.02</td>
</tr>
<tr>
<td>I30-2.0-0.3-0</td>
<td>129</td>
<td>0.01</td>
</tr>
<tr>
<td>IW32-1.4-0.6-0</td>
<td>104</td>
<td>0.01</td>
</tr>
<tr>
<td>IW32-2.4-0.6-0</td>
<td>71</td>
<td>0.02</td>
</tr>
<tr>
<td>IW32-4.0-0.6-0</td>
<td>107</td>
<td>0.01</td>
</tr>
</tbody>
</table>

$a_{e\sigma_n}$: Yield strength of longitudinal reinforcement(kN)
$a_{e\sigma_s}$: Tensile strength of longitudinal reinforcement(kN)
$a_{e\sigma_w}$: Yield strength of horizontal wall reinforcement(kN)
$a_{e\sigma_t}$: Tensile strength of horizontal wall reinforcement(kN)
N_e: Axial strength based on yield strength ($=a_{e\sigma_n} + a_{e\sigma_s}$)
N_{se}: Axial strength based on tensile strength ($=a_{e\sigma_t} + a_{e\sigma_w}$)

解析プログラム ATENA2D を用いた。

解析では、コンクリートを SBATEMaterial でモデル化し、あらかじめの拘束効果を有する提案形により算定し、拘束効果を考慮した。鉄筋については、柱と梁の主筋を離散要素でモデル化し、鉄筋とコンクリート間の付着すべきを考慮した。その他の鉄筋においては分散要素でモデル化し、鉄筋とコンクリート間の結合は完全付着とした。

図-6 要素分割図

図-7 FEM 解析による水平荷重 Q 中間梁端部 R の関係
Raphson法とラインサーチ法を同時に用いた。

4.2 解析結果

水平荷重Q - 中間部材角Rの関係を図-7に示す。解析では実験結果とは異なり、梁の断面形状の違いにより、履歴曲線の相違が見られたが、梁幅が壁厚と同じ試験体においては、ほぼ同じ履歴曲線が得られた。梁幅が壁厚の2倍ある試験体に関しては、最大荷重の部材角が、実験値の倍以上になる傾向が見られた。解析結果からも、主筋強度が増大すると、せん断強度も増大する傾向がみられた。

表4に水平せん断強度一覧を示す。FEM解析値は、実験値とほぼ同じである。一方、終局強度による算定式で求めた算定値は実験値よりかなり小さいことから、中間部材のせん断強度を適切に評価するためには、オープンフレームの部材せん断強度算定式の適用法を含め、新たな評価法を検討する必要があるものと思われる。

5. 結論

連層耐震壁中間梁の応力状態を再現した要素試験体モデルのせん断実験の結果、以下のことがわかった。
1)中間梁要素試験体のせん断破壊は、既往の連層耐震壁の水平載荷実験から得られた中間梁のせん断破壊とほぼ同じ性状であった。
2)中間梁の梁断面形状に関わらず、ほぼ同様な履歴曲線が得られ、中間梁の主筋長およびあら筋長が同じであれば、梁幅の大小に関わらず、ほぼ同様なせん断破壊となった。
3)主筋強度が高くなると、梁幅が壁厚と同じ場合、大変形時にせん断破壊を起こし、履歴性状に梁断面形状の影響が見られた。
4)主筋比の小さい試験体は、軸方向耐力で強度が決まった。
5)中間梁のせん断強度は、FEM解析でおおよそ評価することが可能である。
6)耐震壁中間部材せん断強度を適切に評価するためには、オープンフレームの部材せん断強度算定式の適用法を検討する必要がある。

謝辞

試験体製作および実験の実施にあたっては、九州共立大学技師 高田一俊、米原義則、青木治の各氏および平成14年度九州共立大学工学部建築学科江崎研究室、近畿大学九州工学部建築学科小野研究室の卒論生の協力を得た。ここに、関係者各位に感謝致します。

参考文献

(1) 姜優子、江崎文也、小野正行：軸力が作用しない中間柱のせん断強度に関する実験的研究、コンクリート工学年次論文報告集、Vol.23、No.3、pp.457-462、2001.7
(2) 姜優子、江崎文也、小野正行：耐震壁中間柱のせん断強度に及ぼす補強筋強度の影響、コンクリート工学年次論文報告集、Vol.24、No.2、pp.541-546、2002.6
(3) Cervenka Consulting: ATENA2D program documentation
(4) 崎野健治、孫玉平：直線型横補強材により拘束されたコンクリートの応力・ひずみ関係、日本建築学会構造系論文集、Vol.461、pp.95-104、1994.7
(5) CEB: CEB-FIP MODEL CODE 1990 DESIGN CODE、Thomas Telford Service Ltd.、1993
(6) 鐵筋コンクリート造建築の終局強度型耐震設計指針・同解説、日本建築学会、1990