論文 高強度鉄筋の併用によるPC橋脚の耐震性の向上

林 熙彦*1・藤原 武彦*2・野中 聡*3・池田 尚治*4

要旨：本研究は、軸方向鉄筋に高強度鉄筋を使用したRC橋脚、これに緊張筋を用いて軸方向にプレストレスを導入したPC橋脚の静的正負繰返し載荷実験を行い、それぞれについての耐震性能を把握したものである。実験の結果、高強度鉄筋を使用した場合、耐荷能力、残留変位の抑制、残留ひび割れ幅の抑制に優れており、これにプレストレスを導入したもののは、一層優れていることが認められた。また、高強度鉄筋は降伏点が高いため、これをそのまま基準にすると見かけ上の靭性能が過小評価されるため、部材の降伏変位を指標とした新たな靭性能の評価方法を提案した。

キーワード：高強度鉄筋、PC橋脚、耐震性能、靭性能

1. はじめに

橋脚の耐震構造に関して新しい発想が求められる中で十分な靭性、復元性を確保しながら、経済的かつ合理的な断面設計を行う方策として鉄筋の降伏強度を上げることが1つの方法と考えられる。鉄筋コンクリート（以下：RC）構造物に高強度鉄筋などの高強度材料を用いることにより、これまでの一般的なRC構造物と比較して大幅な耐荷能力の向上が見込まれる。これらは鉄筋の降伏強度がRC構造物の最終耐力を決定付けるなど、RC構造物の挙動に大きく影響するからである。

RC橋の場合には供用限界状態におけるひび割れをパラメータとして、降伏に至るまでのエネルギーを評価する方法が提案されている。

RC橋の耐震性を向上させるためには、構造物の破壊を抑制し、エネルギーを消費することが重要である。著者らは、高強度鉄筋の併用による耐震性の向上を検討し、実験結果を示した。

表1 供試体諸元

<table>
<thead>
<tr>
<th>供試体名</th>
<th>コンクリート強度 (MPa)</th>
<th>軸応力度 (MPa)</th>
<th>プレストレス (MPa)</th>
<th>水平方向軸筋</th>
<th>軸方向鋼材比 (％)</th>
<th>一筋</th>
</tr>
</thead>
<tbody>
<tr>
<td>P−N</td>
<td>28.3</td>
<td>1.9</td>
<td>4.0</td>
<td>SD345</td>
<td>1.27</td>
<td>0.66</td>
</tr>
<tr>
<td>R−N</td>
<td>34.1</td>
<td>2.4</td>
<td>1.0</td>
<td>SD785</td>
<td>2.22</td>
<td>0.61</td>
</tr>
<tr>
<td>R−H</td>
<td>39.7</td>
<td>2.6</td>
<td>4.0</td>
<td>SD785</td>
<td>0.63</td>
<td>0.50</td>
</tr>
<tr>
<td>P−H−1</td>
<td>28.7</td>
<td>2.0</td>
<td>1.0</td>
<td>SD345</td>
<td>1.30</td>
<td>0.44</td>
</tr>
<tr>
<td>P−H−2</td>
<td>43.2</td>
<td>2.7</td>
<td>4.0</td>
<td>SD345</td>
<td>1.27</td>
<td>0.66</td>
</tr>
</tbody>
</table>

※1 (橋脚タイプ) − (軸方向鉄筋) − (区分)
P：PC、R：RC、H：高強度鉄筋、N：普通強度鉄筋

*1 横浜国立大学大学院 工学研究院 助手 修 (工) (正会員)
*2 横浜国立大学大学院 工学府社会空間システム学専攻 (正会員)
*3 (株)ビーエス三菱 九州支店 修 (工)
*4 横浜国立大学 名誉教授 工博 (正会員)
割れ幅の制限のために高強度鉄筋の適用にはある程度の限界が生じる。そこでこのような部材にはプレストレスを導入してひび割れ幅を制御する構造の併用が考えられる。既往の研究結果からも橋脚の軸方向にプレストレスを導入した場合、(1)ひび割れ発生時の荷重が大きくなる、(2)鉄筋降伏開始時の荷重が大きくなる、(3)残留変位が小さくなる、といった報告がなされている。これらの利点を高強度鉄筋と組み合わせて適用することで、プレストレスコンクリート（以下：ＰＣ）構造の適用範囲がより広がるとともに優れたコンクリート橋脚の設計が可能であると考えられる。

以上を踏まえて、本研究では高強度鉄筋をＲＣ、ＰＣ構造に使用したコンクリート橋脚の性能を把握することとした。

<table>
<thead>
<tr>
<th>鋼材</th>
<th>降伏強度 (MPa)</th>
<th>引張強度 (MPa)</th>
<th>弾性係数 (GPa)</th>
<th>適用</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD345 D6</td>
<td>352</td>
<td>594</td>
<td>173</td>
<td>普通鋼</td>
</tr>
<tr>
<td>SD345 D10</td>
<td>392</td>
<td>567</td>
<td>175</td>
<td>軸方向</td>
</tr>
<tr>
<td>SD345 D13</td>
<td>392</td>
<td>577</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>SD785 D13</td>
<td>1034</td>
<td>1188</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>SWPR7B φ12.7</td>
<td>1732</td>
<td>1965</td>
<td>204</td>
<td>耐熱鋼</td>
</tr>
</tbody>
</table>

※0.2%永久伸びに対する値
弾性係数はひずみゲージによる実測値

2. 実験概要
2.1 供試体諸元

全供試体共通の供試体形状の概要を図－1に示す。供試体は独立1本柱形式であり、400mm×400mmの正方形中実断面とした。載荷点はフーチング上面より1500mmの高さで、せん断スパンおよび断面高さ比は3.75である。

供試体の諸元を表－1に、使用した鋼材の力学的特性を表－2にそれぞれ示す。ＲＣ柱供試体は高強度鉄筋（SD785, D13）を軸方向に16本配置したR-H-1, および28本配置したR-H-2の計2体とした。ＰＣ柱供試体は高強度鉄筋（SD785, D13）を8本配置したP-H-1, および16本配置したP-H-2, 普通強度筋（SD345, D13）を16本配置したP-Nの計3体とし、P-C鋼材にはSWPR7B φ12.7をそれぞれ8本ずつ配置した。鋼材の断面配置は4種類であり、各供試体の断面図を図－2に示す。

帯鉄筋は、P-H-2及びR-H-2についてはD10鉄筋をフーチング上面から840mmの間には40mm間隔、その他の間には60mm間隔で配置した。また、R-H-1, P-H-1, P-Nに関しては、D6鉄筋をフーチング上面から840mmの間には30mm間隔、その他の間には60mm間隔で配置した。いずれの供試体も曲げ破壊を誘導するため、せん断曲げ耐力（せん断耐力/曲げ耐力）が1.0を上回るように設計した。

以下、R-H-1, R-H-2をR-Hシリーズ、P-H-1, P-H-2をP-Hシリーズとする。
2.2 計算耐力

各供試体についてはコンクリートのひび割れ発生荷重、軸方向鉄筋の降伏荷重、および最大耐力をファイバーモデルにより求めた。ファイバーモデルに使用した材料の応力-ひずみ関係およびせん断耐力の計算方法を示す。これらの計算結果を表-3に示す。

2.3 載荷方法

実験はひび割れ発生後は荷重制御、ひび割れ発生後は荷重制御で行い、管理変位は、部材回転角（載荷点水平変位/載荷点高さ）の±1/200rad（7.55m）に整数倍を掛けた値に対応する載荷点での水平変位とした。著者らによるこれまでの載荷実験の結果から、地震時に構造物に生じる大きな変形の繰返し回数は多くても1回程度と考えられるため、同じ管理変位での繰返しは1回とした。また、部材耐力が最大耐力の80%を下回った時点を終局とした。

3. 実験結果および考察

実験結果の一覧を表-4に示す。各供試体の荷重-載荷点変位関係を図-3に示す。各供試体とも曲げひび割れ、斜めひび割れの発生の後、基部付近のコンクリートの圧壊、主鉄筋の座屈を経て曲げ破壊に至った。また、表-3と表-4を比較すると各実験結果の値はファイバーモデルによる計算結果とよく一致していることがわかる。

3.1 耐荷挙動

各供試体について荷重-変位包絡線を比較したものを図-4に示す。

(1) 軸方向鉄筋の強度の比較

P-H-2とP-Nは同一品種であるが軸方向鉄筋の強度が異なる。高強度鉄筋を使用したP-H-2は降伏荷重が33.8kN、最大荷重が38.1kNに対して普通強度鉄筋を使用したP-Nは降伏荷重が210.3kN、最大荷重が244.3kNであり、両供試体で大きな差が出る結果となった。これは、高強度鉄筋と普通強度鉄筋の強度の差が顕著に供試体の耐力の差として現れたものである。

(2) R-H-1、P-H-1について

最大耐力が共に270kN程度でこの2体の包絡線は類似しているが、P-H-1はR-H-1に比べ変形能力が若干上回っている。

(3) R-H-2、P-H-2について

最大耐力が共に380kN程度のこの2体の包絡線は初期においてはほぼ一致しているが、P-H-2は
R-H-2に比べ、大変形時の密度が低下させるために、変形性能に富んでいることが示されている。

3.2 吸収エネルギー
管理変位毎の累積吸収エネルギーを図-5に示す。P-H-1は耐力のほぼ等しいR-H-1を若干上回っており、P-H-2は耐力のほぼ等しいR-H-2とシリーと同じような挙動を示した。

また、配筋が同じで軸方向鉄筋の強度が異なるR-H-2とP-H-1については、途中までP-Nが大きい傾向が見られたが、12/200radにおいては等しい結果となった。

3.3 残留変位
残留変位は地震後の構造物の供用に対する可否を決める重要な指標の1つであり、現行の道路橋示方書20)では重要度の高い橋の構脚は、地震による損傷を限定された範囲にとどめ、地震後の残留変位を1/100rad以下に制限することが規定されている。

そこで復元性を比較するために各管理回転角と残留変位（正側変荷が負側変荷の平均値）との関係を図-6に示す。上記のように1/100radを許容値の目安として残留変位について考える場合、同程度の耐力を有する供試体について比較してみると、R-H-1では回転角8/200rad載荷後の残留回転角が1/100radを超え、P-H-1では9/200rad載荷後の残留回転角が1/100radを超えた。また、同様にR-H-2では8/200rad、P-H-2で10/200radでそれぞれ残留回転角が1/100radを超えた。このような差が出たのは、P-Hシリーズはプレストレスを併用したことでの高い復元性を得られたためと考えられる。

また、P-Nは回転角8/200rad載荷後の残留変位が1/100radを超え、P-Hシリーズに比べ若干小さかった。P-C構造とする場合には高強度鉄筋との併用が好ましいことを示している。

3.4 ひび割れ状況・残留ひび割れ
各供試体とも、基部に曲げひび割れが発生した後に基部と載荷点の中間の高さ付近に斜めひび割れが発生した。

R-Hシリーズは曲げひび割れ、斜めひび割れともに発生範囲が集中して進展したのに対して、P-Hシリーズは分散してひび割れが発生した。しかしながら、P-HシリーズはR-Hシリーズに比べ、基部のコンクリートの圧縮が早き段階で発生し
図-7 残留ひび割れ幅－管理回転角関係

図-8 提案する降伏変位

た。これはあらかじめプレストレスの導入によってコンクリートに与えられた圧縮力の影響だと考えられる。各供体体の最大荷重時のひび割れ状況を図-7に示す。

残留ひび割れは残留変位と同様に、構造物の供用限界を決定する1つの指標である。各供試体の管理変位と残留ひび割れ幅の最大値との関係を比較したものを図-7に示す。

P-Hシリーズは、R-Hシリーズを大きく下回り、プレストレスの導入によって残留ひび割れ幅を大きく抑制する結果となった。

またP-Nは、高強度鉄筋を使用して耐力がP-Nと同等のP-H-1や、P-Nと配筋が同じで高強度鉄筋を使用したP-H-2と比較しても残留ひび割れ幅が小さくなった。これにより、P-C構造と高強度鉄筋の併用が残留ひび割れの抑制に非常に有効であることが示された。

4. 靭性能

靭性能とは部材の塑性域における終局変位を降伏変位で基準化した値であり、この値が大きいほど部材は変形性能に富んでいるといえる。

まず従来から用いられている方法を用い、靭性能として終局変位(δsu)を降伏変位(δyi)で除すことにより求めた各供試体の靭性能を表-5に示す。高強度鉄筋を使用したR-Hシリーズ、P-Hシリーズは普通強度鉄筋を使用したP-Nに比べてより優れた橋脚としての性能を示したもの、この方式で求めた靭性能は相当に小さい値となった。これはここで用いた高強度鉄筋にはいわゆる降伏幅が無く、かつ、基準とした降伏変位が大きくなることに起因している。しかし、
これまで述べてきたように本研究における各供試体、特にP-Hシリーズは軸方向鉄筋降伏後も極めて健全な挙動を示している。また、鋼材量が同じで軸方向鉄筋の降伏点が異なるP-H-2（SD785を配置）とP-N（SD345を配置）は、耐力差はあるが挙動は極めて似ている。そのため、上述の靭性能による値の差ほど、普通強度鉄筋を配置した供試体と高強度鉄筋を配置した供試体との靭性能に差があるとは考えられず、この方法では後者を過小評価する傾向があり、このままでは適切な評価できていないと考えられる。

そこで本研究では靭性能μを求めるにあたり、
$$\mu = \frac{\delta_{80}}{\delta_{y2}}$$
(1)
という評価方法を提案することとした。図-7に示すように、式(1)のδ_{80}（終局変位）は最大耐力の80%のときの変位とし、δ_{y2}は一般に用いられている鉄筋の降伏点を基準として、鉄筋の応力が300MPaに達する点と原点を結ぶ直線が最大耐力に達する時の変位とする。このようにして求めた各供試体の靭性能を表-5に併せて示す。

提案した方法による靭性能を用いるとP-H-2とP-Nとの靭性能の差は従来の方法に比べて小さく、各供試体の変形性能をほぼ妥当に評価することができたものと思われる。

5. まとめ
本研究で得られた結論は以下のとおりとなる。
1. 高強度鉄筋SD785を併用したPC橋脚は、高強度鉄筋を使用したRC橋脚と比べて、同等の耐荷能力を発揮するとともに、残留変位の抑制、残留ひび割れの抑制に関しては、より優れた性能を発揮することが確認出来た。
2. 高強度鉄筋を併用したPC橋脚は、普通強度鉄筋を配置したものに比べ、鉄筋の降伏点の差が大きく現れ高い耐荷能力を発揮した。また、残留変位の抑制、残留ひび割れ幅の抑制にも優れていることが認められた。
3. 高強度鉄筋を併用することでPC橋脚は高

い耐荷能力や粘りのある挙動を示すことが認められたものの、従来の評価方法では靭性能の値は相当に小さく評価される結果となった。

4. 高強度鉄筋を配置した橋脚の靭性能を求めるに当たり、鉄筋の降伏点のみに依存せず部材としての降伏変位を基準とする新しい靭性能の評価方法を提案した。これにより妥当な靭性能の評価が得られたものと思われる。

謝辞
本研究を実施するにあたり横浜国立大学の森下豊氏ならびに山口隆裕氏（現、極東鋼弦コンクリート振興（株））、鍋島達哉君（現、旭化成ホームズ（株））に協力、参加を賜った。また、供試体の製作には（株）富士ビル・エスの白石氏に多大な御協力を戴いた。ここに関係各位に謝意を表します。

参考文献
1) 宇佐美滋：鉄筋コンクリート造柱・はり用高強度鉄筋に要求される機械的性能、コンクリート工学、Vol.38、No.10、pp.22-33、2000.10
2) 飯島資輔、山口隆裕、池田尚治：高強度材料を用いたPPCはりの曲げ挙動、コンクリート工学年次論文集、Vol.19、No.2、pp.178-183、1997.6
3) 白浜寛、山口隆裕、池田尚治：軸方向にプレストレスを有するコンクリート橋脚の耐震性能、コンクリート工学年次論文集、Vol.19、No.2、pp.1197-1202、1997.6
4) 池田尚治、森拓也、吉岡民夫：プレストレスコンクリート橋脚の耐震性に関する研究、プレストレスコンクリート、Vol.40、No.5、pp.40-47、1998.9
5) 日本道路協会：道路橋示方書・同解説Ⅴ耐震設計編、2002.3