移動荷重を受ける道路橋 RC床版の疲労強度と水の影響について

正会員 松井繁之（大阪大学工学部）

1. まえがき
道路橋RC床版の損傷問題が発生してから約20年経過した。この間、床版設計法は数々にわたって改訂が行われるようであり、既存の損傷床版に対しては種々の補修・補強対策が構築され、一見問題は鎮静化するよう見受けられる。しかし、床版の損傷機構、疲労強度等についてまだ明確な結論は出ておらず、合理的な疲労設計法は確立されていない。さらに、現行の補修法の効果も根本的には評価されていないのが現状であろう。

本論文はRC床版のひびわれ損傷を道路橋特有の疲労現象であるとの観点に立って、RC床版に対する疲労設計法確立の基礎となる疲労強度の評価法について述べるものである。さらに、実橋の観察から、損傷には荷重の繰り返し載荷が原因するのではなく、雨水も大きな影響因子となっていると推察できることから、供試体床版の上面に水を張って実験を行い、その影響度を基礎的であるかを定量的に調べた。これらの結果を併せて述べ、床版防水工の必要性を強調した。

2. 疲労実験法と疲労強度の評価法について
2.1 輪荷重走行試験法
RC床版の疲労性は災害の疲労であるとの認識から種々の疲労実験が行われてきた。その中で、自動車の走行性に起因するねじりモーメントとせん断力の交織線返しが損傷の主原因であるとの着想から、筆者ら[1]、園田ら[2]、および、川口ら[3]は輪荷重を走行させる疲労実験法を開発し、多くの疲労実験データを報告している。また、実物大のトラックを円軸線上に走行させる道路耐久性試験装置を用いた疲労実験も行われている[4]。これに輪荷重走行試験法によれば、床版は荷重下の一部で押しねぎせん断破壊的なせん断破壊を起こし、実橋床版の進捗破壊がほぼ説明できるようになった。図1-1は筆者の実験床版を破壊位置でカットした横断面図である。載荷板の両端からせん断破壊したことがわかる。

そして、それらのS－N結果は従来の一定点載荷試験法による結果から大幅に低下し、実橋の疲労寿命推定可能になった。

2.2 既往のS軸表現法によるS－N曲線
筆者はこれまで表1-1に示す実物大床版（FA、FBSeries）の疲労実験を行った。FASeriesは旧示方書[5]に準拠し配力鉄筋比を約40％にしたもののである。一方、FBSeriesでは現行示方書[6]に準拠してそれを77％にした。これら2シリーズの結果をS－N図にプロットしてみる。

一般に、新コンクリート標準示方書[7]でも見られるように、コンクリートの疲労強度特性を

表1-1 筆者および園田が実験した床版の諸元

<table>
<thead>
<tr>
<th>シリーズ</th>
<th>床版厚（mm）</th>
<th>床版厚（cm）</th>
<th>試験体数</th>
<th>供試寸法</th>
<th>試験寸法</th>
<th>主鉄筋</th>
<th>内鉄筋</th>
<th>鉄筋直径</th>
<th>鉄筋長さ</th>
<th>輸荷重</th>
<th>鍛接荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>300 × 300</td>
<td>30</td>
<td>8</td>
<td>180</td>
<td>160</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>FB</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>180</td>
<td>160</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>IS</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>180</td>
<td>96</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>IR</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>180</td>
<td>96</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>ID</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>180</td>
<td>96</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>OG</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>180</td>
<td>96</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
<tr>
<td>OR</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>180</td>
<td>96</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>16(5)</td>
<td>61.3</td>
<td>14.3(4.6)</td>
</tr>
</tbody>
</table>

注：①各内鉄筋は床版の上面に配置した特徴

-627-
表わすS－N曲線の綫軸Sには最大作用荷重/静的耐荷力の無次元量が採用される。ここでも、まずこの表現法を採用するが、静的耐荷力P0を計算する必要がある。荷重荷重のような部分集中荷重が作用する場合、一般的に床版は押しきれず断破壊し、P0にこの耐荷力を足せることで、これが著者の提案した次式の押しきれず断耐荷力評価式[8]で計算できる。

\[P_0 = \tau_{\text{max}} (2(a+2x_0)x_n + \tau_{\text{max}} (2(c+2d_0+b)c_0 + 2(a+2d_0)c_0) \]

ここで、\(\tau_{\text{max}} \)：コンクリートの最大せん断応力度（\(\tau_{\text{max}} = 0.252c_0 \cdot 0.00024c_0^2 \)）、

\(\sigma_{\text{c}} \)：コンクリートの圧縮強度,

\(a, b \)：載荷荷重の主鉄筋方向、配力鉄筋方向の辺長、

\(x_0, x_n \)：引張側コンクリート無視した場合の主鉄筋断面、配力鉄筋断面の圧縮側コンクリート表面から中立軸までの距離、

\(d_n, d_o \)：引張側主鉄筋、配力鉄筋の有効高さ、

\(C_0, C_d \)：主鉄筋、配力鉄筋のかぶり厚さ。

最終的に、S－N曲線は図－2のようになり、FAシーザーとFBシーザーが明瞭に分離した。そして、FBシーザーのほうがFAシーザーのものよりも下方にきた。載荷荷重を直接比較すると、同じ寿命に対してはFBシーザーの載荷荷重はFAシーザーより大きく、配力鉄筋の増加は疲労強度の増加を寄与していることがわかる。しかし、綫軸P/P0の無次元量で表示すると図－2のようになってしまい。これは、FBシーザーのP0が配力鉄筋の増加によって大幅に大きくなったためである。

この図に園田ら[2]のモニタ床版の結果も併記した。表－1に記した条件で実験した。試験体の厚さが7.2cmと小さく、かつ、1万回までの載荷であるが、傾向はほぼ一致した。しかし、著者の結果よりやや低い方にプロットされるが、これには床版厚が影響していると判断できる。

図－2 S軸にP/P0を用いたS－N曲線

2.3 統一化したS－N曲線

上記のようにS－N曲線は配力鉄筋比、床版厚が異なれば違ったものになり、P/P0の表現法を使用するかぎり、床版構成パラメータが変わる毎に実験し、S－N曲線を求めるなければならないことになる。これは不可能に近い。そこで、綫軸の表現を変えて統一化したS－N曲線が示できないものかと模索した。

最終的に、破壊現象に着眼すればよいことがわたった。すなわち、疲労繰返し進むにつれて、主鉄筋方向にひびわれが一旦間隔で発生し、床板は板構造からはり状化し、最終的に主鉄筋断面がせん断破壊する。そして、はりのせん断耐荷力を基準にしてよいことに帰着した。

著者の実験した供試体について貫通ひびわれの間隔について調査してみたところ、約40cm前後の間隔であった。園田の結果は床版厚が小さいため、これよりは小さかった。詳細な観察と検
討の結果、この間隔Bは次ぎの如く計算したものとほぼ一致した。

\[B = b + 2d \]

これはいわゆる疲労に対する床版の有効幅とも言えるものである。

この幅をもつばりのせん断耐荷力は、式（1）の配力鉄筋断面の寄与分を差し引き、次式のように与えられる。

\[P_{sx} = 2 \sigma_{nax} \times b + 2 \sigma_{nax} \times C_n + B \]

この式で求めた耐荷力で截荷荷重を割った無次元変数P/Psxを縦軸にした全結果をプロットしたのが図-3である。全結果が1つのS-N曲線で表現できるようになった。このことは、移動荷重を受けるRC床版の疲労強度には配力鉄筋量を大きく影響しないことを示しており、はり状になれて破壊するメカニズムとも矛盾しない。

以上から、RC床版の疲労強度特性は床版厚・鉄筋量無関係に図-3のS-N曲線で推定してもよいと言える。ただし、この検定は筆者の実物大供試体と図面のモデル供試体だけで行ったため、適用範囲を表-2のように設定しておきたい。なお、配力鉄筋量が確定している場合には図-2の結果を使用してもよい。

3. 水張り疲労実験による水の影響度評価
3.1 実橋における水の振舞い

ひびわれ損傷を受けた実橋床版の下部には一般的に遊離石灰が沈着しており、雨水が貫通しやすく浸透したことは確実である。ただし、疲労によって分離したコンクリートが析出し沈着したものか、セメント中の石灰分であるのか疑問の残るところである。

筆者はしばしば舗装の打替え時に床版上面を観測する機会を得たが、床版上面に泥がたまっており、上側からもコンクリートが全く崩れずにいった目撃できた。写真-1は最終破壊の一例であるが、完全にコンクリートが分離しており、砂利が残り、モルタルが流出していた。このようなモルタル分の流出は裏の仕業であることは明白である。

一方、ひびわれ損傷はひどいが、全く遊離石灰の沈着がない床版もある。このような床版は多くの場合、橋梁に縦断勾配がついており水はけが良好である。
以上のような経験から、水処理の重要性を再認識していた。水は床版にとって悪い影響はあっても、良いものでないことは明らかである。そこで、今回、床版上面に水を張って転荷重走行試験法によって疲労実験した。水によりによる疲労破壊性状の変化、疲労寿命の低下について基礎的に調べようとした。これで、後藤ら[9]、岡田ら[10]の水張り実験があるが、これとは一定点載荷法によって行われたもので、疲労強度についての定量的な解明はなされていない。

3.2 実験方法
a) 実験供試体　供試体は先に述べたFAシリーズと同一のもので、主鉄筋方向2m、配力鉄筋方向3m、厚さ19cmの実物大床版であり、2辺単純支持、2辺弾性支持の条件で実験した。断面の構成、使用材料および押しつきせん断耐荷力の計算値は表-3の通りである。実験状況を写真-2に示す。水の張った範囲は1.2×2.2mで、水深は5mm～1cmである。転荷重の走行範囲は2mである。

b) 載荷荷重　No.1供試体では15t、No.2では10.5tとした。この荷重が30x12cmの面積で作用しながら移動する。

c) 測定方法　適宜走行を中止し、床版中央点で静的載荷を行ってもひびわれに漏水の状況の観察は走行中に行った。

3.3 実験結果
外観観察　写真-2に最終のひびわれ発生状況を示す。No.1供試体では走行回数約1500往復で、No.2では約15000往復で、床版中央の主鉄筋方向のひびわれに漏水が発生した。その後、1000往復の間に漏水長さは約40cmとなり、同時に配力鉄筋方向のひびわれは漏水した。また、非常短時間の間にそれらの漏水ひびわれから写真-3で見られるようにコンクリート片が剥落した。大きさは約1〜3cm程度である。このような剥落は乾燥状態下での疲労実験では見られなかった。水の浸潤によってコンクリートが膨張し、その結果、ひびわれ面相互がたたかれて、すり合わされてコンクリートの結合がゆるみ剥落しているようであった。漏水中にはコンクリート粉あるいはセメント分が多く、漏水受けのパッケの底
にこれらが沈殿着した。
一方、床版上面でも写真-4に示すように、プール外のひびわれに水の漏出が見られた。また、プール内部では水の吹き上げが観察された。この漏出水にもセメント分やコンクリート粉を含んでおり、ひびわれ近傍ではそれらが堆積した。このような上面での挙動を見ると、実橋床版の舗装下で戻が観察されたことが、やはり、水のしみがであると断定できる。武田ら[11]は実橋観測し、床版上面のひびわれの方が下面のものよりひびわれ幅が大きいことが多いと報告している。今回実験においても、この傾向は明らかに見られた。ひびわれ面のこすり合わせによってコンクリート粉が噴出したためである。乾燥下の実験では全くこのような傾向は見られなかった。

最終的に、軌道下の床版中央部が陥没破壊し、上面の破壊状況を写真-5に示したが、上側コンクリートが砕利になっており、実橋の破損例と同様になった。

写真-3 床版下面での漏水と落ち状況。
写真-4 上面ひびわれの水の漏出状況。
写真-5 上面の最終破壊状況（No.1）。

たわみの変化状況-図-5は、たわみ変化の一例である。これらから1つの傾向がみられる。すなわち、水の漏出後の寿命は大変短いことである。また、劣化は残留したわみに顕著に現れるが、活荷重たわみには漏水前の変化が現れない。

疲労強度-図-6にS-N結果を示した。乾燥状態下で行った同一条件の供試体であるFAシリーズの疲労実験結果を転記した。ただし、S-N曲線の傾斜はP/σ0である。S-N曲線の傾斜はほぼ同じとなること、および、水張りの場合、約1/250も疲労寿命が低下したことがわかる。この低下は非常に大きいと言える。乾燥下のS-N曲線を用いて18cm厚の床版（スパン3・8m）の疲労寿命を通常の都市高速道路の活荷重を用いて計算すると約5000

-631-
年程度となるが、もし、この床版の舗装が悪く、常に水が滞留していると仮定すると、その寿命はせいぜい2年となってしまう。一般に、わが国では毎日雨は降らず、橋面排水にも注意が払われており、また、床版上にはアスファルト舗装が施されるため、水の滞留時間は非常に短いと考えられ、実際にはここで示したものよりはるかに寿命は延びるであろう。しかし、交通量が多くて舗装の割れが目立つ橋梁で、路面に勾配がない場合には、雨後も相当長い時間水が滞留する恐れがあり、疲労寿命の短縮が心配される。このような橋梁では床版防水工による延命が強く望まれる。

図-6 水張り実験のS-N結果

4. 結論

軸荷重走行試験で実のS-N結果は実橋の疲労寿命の推定には有効なものであるが、これまでのように繰返しP/Peoで表現すると床版構成パラメタが設けず実用的でない。このため、繰返しをP/Pe sx に変換した。この結果、これまでのS-N結果を1本のS-N曲線で表現できるようになった。

また、今回の床版上面の水環境を極端な劣悪状態に想定し、RC床版の最小寿命を求めた。寒冷地においてはびわわに浸入した水が凍結融解を繰り返し、さらに寿命が低下するものと予想される。床版防水の必要性がいろいろな所で論議されているが、今回の実験結果から明確にその必要性が強調できる。

参考文献

[1] 前田、松井：軸荷重荷重移動装置による道路橋床版の疲労に関する研究、第6回コンクリート工学年次講演会論文集、pp.221-224、1984。
[2] 関田、今井、堀川、船越：軸荷重の反復下でのRC床版の挙動、第8回コンクリート工学年次講演会論文集、pp.649-652、1984。
[3] 原田、川口、高橋：模型橋梁床版の走行荷重による疲労実験、土木学会第41回年次学術講演会、pp.481-482、昭和61年11月。
[5] 日本道路上会：道路橋示方書・同解説 Ⅱ鋼橋編、昭和55年2月。
[6] 日本道路上会：鋼道路橋設計製作方書解説、昭和39年6月。
[7] 土木学会：昭和61年制定コンクリート標準示方書、昭和61年10月。
[8] 前田、松井：鋼筋コンクリート床版の押しつきせん断耐荷力の評価式、土木学会論文報告集 V-1、pp.133-141、1984。
[9] 後藤、中村、高橋：人間びわわを発生させた鋼橋床版の疲労耐力、第38回土木学会年次学術講演概要 V-158、pp.313-314、昭和58年11月。
[10] 岡田、岡村、園田：道路橋鋼コンクリート床版のびわわ損傷と疲労性状、土木学会論文報告集 第321号、pp.49-61、1982年5月。

—632—