時間依存性クリープ破壊の統一的な破壊力学モデル

I. はじめに
材料あるいは構造物の時間依存性破壊は高圧機器の金属部品、高分子材料、高分子系複合材料などによく見られる破壊現象である。原子炉や航空機ジェットエンジンなどの高温環境に使用される金属部品が使用時間の増加と共にクリープ状態のクラック進展によって破壊していく現象はその代表的な例として挙げられる。また、高分子材料や高分子系複合材料の粘弹性・粘塑性性破壊も時間依存性の特徴を持っている。従来のエネルギー解放率G、応力拡大係数K、経路に依存しないJ積分をベースにした破壊力学は、基本的に材料の性質が時間に依存しない材料の破壊を研究対象としている。材料の性質が使用時間に伴って変化する材料の破壊においては適用が難しい。そこで、時間依存性破壊力学の研究が理論的にも実用的にも必要である。70年代後半から今日まで、多くの研究が発表されているが、これらはいずれも特定の条件における研究で、一般的に適用可能、明瞭な物理的意味を持った計算や実験で求められる統一的な時間依存性破壊はまだ見つかれていない。そこで、本研究では、エネルギー法と従来の研究についての考察を基にして、一般的な時間依存性材料に適用できる、経路に依存しない新しい積分J(t)を導出した。現在の各特定の条件下の破壊力学はいずれもJ(t)の特殊なケースとして考えられることから、これをベースに統一的な時間依存性破壊力学モデルを提案する。

II. 経路に依存しない積分J(t)の導出
図1に示す長さaの亀裂を有する解析モデルを考える。材料のモデルを一般的な時間依存性材料とする。GとGはそれぞれ亀裂表面を除いたモデルの境界とモデル内で亀裂先端を時計方向と逆に時計周方向の任意の積分経路を表す。GとGはそれぞれ外力と変位が与えられた境界面上の局部領域を表す。負荷条件として与えられた外力Tは定常外力とし、境界条件として与えられた変位は亀裂によって無いとする。本研究が静的な、Fig.1. A two-dimensional cracked body

次元および微小変形の問題に限られる。任意時刻tにおける応力σ, ひずみε, 変位uを

\[\sigma = \sigma_0(x, \tau), \quad \epsilon = \epsilon_0(x, \tau), \quad u = u_0(x, \tau), \quad \alpha = 1, \] とすれば、時間増分δtに伴う物体のトータルポテンシャルエネルギーの増分は次のような式で表せる。

\[\Delta U = \int_a \sigma_0 \epsilon_0 \mathrm{d}x - \int_a \tau \mathrm{d}r. \] ここで、右边の第1項と第2項はそれそれぞれ応力仕事の増分と外力仕事の増分と呼ばれる。また、変位の関数はEinstein和、\(A_0 \)はGと亀裂表面で閉まった積分領域を示す。

式(2)を時間増分δtで割り、\(\delta t \to 0 \)の極限をとると、

\[\frac{\delta}{\delta t} \int_a \sigma_0 \epsilon_0 \mathrm{d}x = - \int_a \tau \mathrm{d}r. \] から得られる。式(3)を、亀裂長さがそれぞれaと(a+\(\delta a \))である場合を除けばまったく同じ2体問題に適用し、\(\delta a \)による値の変化を求めると

\[\delta \int_a \sigma_0 \epsilon_0 \mathrm{d}x = - \int_a \tau \mathrm{d}r \] が得られる。ここで、

\[W = \sigma_0 \epsilon_0 \] は応力仕事密度である。積分領域A0、A及びAと境界面Gは2体問題において同じA0がき裂先端の特異点を含まないので、式(4)は次のように書き換える。

\[\delta \int_a \sigma_0 \epsilon_0 \mathrm{d}x = - \int_a \tau \mathrm{d}r \] トリプル積分を用いた形で書き換える。式(6)の第2項の微分方程式の形で表すと、

\[\delta \int_a \sigma_0 \epsilon_0 \mathrm{d}x = - \int_a \tau \mathrm{d}r \] が得られる。ここで、\(n \)はx1と積分経路の外向き法線の方向余弦である。式(7)、(8)を式(6)に代入し、さらに、次にGaussの定理及び仮想仕事原理

\[\int_a \sigma_0 \epsilon_0 \mathrm{d}x = - \int_a \tau \mathrm{d}r \] を適用すれば、

\[- \int_a \sigma_0 \epsilon_0 \mathrm{d}x = \int_a (W_n - \tau_0) \partial x_1 \mathrm{d}x - \frac{1}{2} \int_a \epsilon_0 \partial x_1 \mathrm{d}x - \int_a \epsilon_0 \partial x_1 \mathrm{d}x \] が得られる。上式から経路に依存しない積分を導くため、積分経路を次の環状経路とした積分

\[I = \int_a (W_n - \tau_0) \partial x_1 \mathrm{d}x. \] が導かれる。ここで、\(AB \)とCDは図1に示す部分亀裂表面で、亀裂先端がGに含まれていない。よって、

---57---
Gaussの定義及び

\[T_i = \sigma_{ij} n_j, \quad \partial \sigma_{ij} / \partial x_i = 0 \]
(13)

を式(12)に適用すれば、

\[\int \sigma_{ij} \partial \sigma_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
\[= \int \sigma_{ij} \partial \sigma_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(14)

を得る。一方、式(12)の積分は\(AB \)と\(CD \)でゼロとなるので、式(14)と合わせれば、

\[\int \sigma_{ij} (W_{ij} - \sigma_{ij} n_j / \partial x_i) \partial x_i \partial x_i \partial x_i \partial x_i dA \]
\[= \int \sigma_{ij} (W_{ij} - \sigma_{ij} n_j / \partial x_i) \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(15)

が得られる。上式の右の項の積分関数がき裂端において一般的に積分値の特異性を持つため、右の面積積分を簡単に\(A \)と\(t \)における積分に置き換えることができない。このため、き裂端を囲む小さい領域\(A \)を考えて、\(A \)が十分に小さいとすれば、き裂端の応力集中により、クリープ変形が\(A \)で支配的になり、ひずみ率\(\gamma \)が応力\(\sigma \)だけに依存し、両者の関係が非線形弾性的な関係と仮定できる。そうすると、\(A \)において、弾性力学のひずみと余ひずみエネルギー密度関数のように、次のような数値的なポテンシャル関数

\[\tilde{W} = \frac{1}{2} \sigma_{ij} \tilde{\epsilon}_{ij} = \frac{1}{2} \frac{\partial \tilde{W}}{\partial A} \]
(16)

\[\tilde{W} = \frac{1}{2} \sigma_{ij} \tilde{\epsilon}_{ij} + \frac{1}{2} (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(17)

が得られる。ここで、\(\beta \)は\(\gamma \)の特異性を表す定数である。

つまり、\(r \to 0 \)のとき、\(\gamma \to r^{-1/2}(\theta, r, a) \)。

よって、式(15)～(17)により、

\[\tilde{W} = \frac{1}{2} \sigma_{ij} \tilde{\epsilon}_{ij} + \frac{1}{2} (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(18)

\[\sigma_{ij} = \frac{\partial \tilde{W}}{\partial A}, \quad \tilde{\epsilon}_{ij} = \frac{1}{2} \frac{\partial \tilde{W}}{\partial \sigma_{ij}} \]
(19)

を得る。ゆえに、式(18)、(19)より、次のような経路に依存しない積分\(J(t) \)

\[J(t) = \int \tilde{W} + \sigma_{ij} \tilde{\epsilon}_{ij} + (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(20)

を得る。更に、式(7)、(9)、(11)、(20)より、

\[J(t) = \int \tilde{W} + \sigma_{ij} \tilde{\epsilon}_{ij} + (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(21)

あるいは、

\[J(t) = \int \tilde{W} + \sigma_{ij} \tilde{\epsilon}_{ij} + (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(22)

が得られる。式(21)、(22)は\(J(t) \)の物理的意味を表しており、\(J(t) \)を求める実験方法を検討するときに便利である。

3. \(J(t) \)と従来のパラメータとの関係

まず、\(J(t) \)と\(J \)積分の関係を考察する。通常の\(J \)積分

\[J = \int (W - \tilde{W} / \partial x_i) \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(23)

\[W = \frac{1}{2} \sigma_{ij} \tilde{\epsilon}_{ij}, \quad \tilde{\epsilon}_{ij} = \frac{1}{2} (\sigma_{ij} \tilde{\epsilon}_{ij}) \tilde{A} \]
(24)

の代わりに、本研究では、次のような式を\(J \)積分と定義する。即ち、

\[J = \int (W - \tilde{W} / \partial x_i) \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(25)

ここで、\(\gamma \)は\(\epsilon \)の特異性を表す定数である。つまり、\(r \to 0 \)のとき、\(\gamma \to \gamma \tilde{\epsilon}^2(\theta, r, a) \)。

積分領域\(A \)において式(24)が成立すれば、式(25)の第2項がゼロとなり、式(25)は式(23)と等しくなる。しかし、式(24)の関係が積分領域\(A \)の全域ではなく、き裂尖端を囲む小さい領域しか有効でない場合でも、式(25)は依然経路に依存しない積分である。よって、式(25)は、式(23)より材料の構成式に対する制限が緩いため、もっと一般的な経路に依存しない積分と考えられる。一方、式(25)と式(20)を比べると、\(J(t) \)は式(25)の\(J \)積分と同じ関数形式を持っている。従って、\(J(t) \)も一種の\(J \)型の経路に依存しない積分である。

次に、\(J(t) \)と\(C(t) \)の関係

\[C(t) = \lim (r \to 0) \int (n / (n + 1))^2 \tilde{W} + \sigma_{ij} \tilde{\epsilon}_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(26)

の関係を調べる。式中の\(n \)は次の構成方式

\[C(t) = \lim (r \to 0) \int (n / (n + 1))^2 \tilde{W} + \sigma_{ij} \tilde{\epsilon}_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(27)

に示すクリープ指数である。き裂先端近傍においてクリープ変形が支配的になるので（つまり、式(27)の第3項が支配的になる）、弾塑性破壊のHRR特異性との類似性により、き裂先端近傍の応力とひずみ場は近似的に

\[\sigma_{ij} = C(t) / BL^{n+1} \tilde{\epsilon}_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(28)

\[\tilde{\epsilon}_{ij} = C(t) / BL^{n+1} \tilde{\epsilon}_{ij} / \partial x_i \partial x_i \partial x_i \partial x_i dA \]
(29)

で表せる。ここで、\(t \)はクリープ指数\(n \)の関数である。式(28)、(29)より、\(C(t) \)は理論的に時間依存性破壊力学の負荷パラメータとして適当であることがわかる。しかし、式(26)の積分は無限小経路に限られるため、実験的に計測できない、形式的なパラメータとなっている。一方、式(20)の積分経路を式(26)の\(C(t) \)と同経路とする、式(20)の第2項の面積積分がゼロとなり、\(r \)が\(n / (n + 1) \)となるので、

\[J(t) = J_0 \]
(30)

が得られる。上式により、\(C(t) = J(t) \)の特殊な1ケースである。従って、\(J(t) \)の経路に依存しない性質及び式(22)のような実験的に計測できる形式により、\(J(t) \)は時間依存性破壊力学の統一的な負荷パラメータとして適用と考えられる。故に、時間依存性破壊の判定式を

\[J(t) = J_0 \]
(31)

と定義できる。\(J_0 \)は実験で求めた\(J(t) \)の限界值である。