305
屈曲した薄肉部材の衝撃強度
神奈川工科大学 〇宇田和史 神奈川工科大学 前川一郎 東海大学 粲谷平和
Impact Strength of Bent Thin Walled Member
Kazufumi UDA, Ichiro MAEKAWA and Hirakazu KASUYA
1 緒 言
航空機や宇宙機、自動車等の薄肉構造物の结合部には、屈曲した部材が多く用いられている。これらの部材に衝撃力が作用して屈曲部における応力波の振幅が増大すると破壊を生じることがあるため、応力波の伝播挙動に及ぼす部材寸法形状の影響を明らかにしておくことは、衝撃安全設計上重要な課題である。

本報ではこれをモデル化して、屈曲部周部の曲率半径 R および屈曲部交差角度θが固一定値で与えられた L字型の試験片を準備した。これら R 値およびθ値が衝撃強度に及ぼす影響を明らかにするために、屈曲部における波の伝播挙動を実験的および数値的に検討した。

2 衝撃実験
2.1 試験片の準備 試験片はFig.1のようにL字型の形状をした板厚 t = 5 mm、板幅 B = 30 mm、長さ L = 300 mmの薄肉帯板構造とし、両端部間の交差角度θを固定端側から見て反時計方向にθ = 30°、45°、60°および90°の4種類を準備した。両端部交差部の動的応力集中を検討するため、屈曲部両端の曲率半径をR = 1 mmおよび5 mmとし、事前に行った動的弾性数値解析の結果より波の伝播挙動と応力分布を検討した。それにより、力点直角度にひずみ計 G1、す、屈曲部周部ではG2を試験片の力点側長手方向に対して平行に、さらにその裏面にはG3と同位置でかつ直行させてG4を、そしてG5をR留まりに、それぞれ同様のよう配施工した。

試験片材料には、弾性係数値及び弾性波速度が小さく加工が容易なアクリル（PMMA）製の帯板を用いた。

2.2 実験方法 試験片の一端を固定し、質量M = 1 kgである板厚のインバタを落下高さh = 100, 200, 300 mmから自由落下させて試験片に衝撃荷重を与えて、Fig.1のような応力集中部位の動的ひずみを計測した。インバタの落下高さhより求めた衝撃速度の計算値は、V = 1.40, 1.98, 2.43 m/sであった。なお衝撃荷重は試験片帯板に対して線状の分布荷重と仮に、インバタの先端を半径r = 3 mmの半円状に加工してある。

3 結果および考察
動的ひずみの計測結果を、θ = 30°、V = 2.43 m/sを例としてFig.2に示す。図(a)はR = 5 mmの場合であり、ひずみが立ち上がって時刻t = 0.47 msにおいて波頭が円弧部に到達し、G4によるひずみ値はt = 5.16 msで最大ひずみδmを生じその後複雑な振動を記録した。他のθ値でも同様の傾向となった。一方図(b)はR = 1 mmとした場合であり、t = 0.45 msで波頭が円弧部に到達し、t = 3.25 ms経過後に最大値δmを生じて試験片が破断した。
破断状況は Fig.3 の様に、円弧部をはさんで固定側および衝撃荷重負荷側の両帯板全域に及んでいる。
実験結果と併せて応力波の伝播挙動を検討するために、\(\theta = 30^\circ \), \(R = 1\text{mm} \), 衝撃速度 \(V = 2.43 \text{m/s} \) とした場合の動的弾性数値解析によって得た相当応力分布を Fig.4に示す。図(a)は、着力点から進行してきた波が円弧部に到達した時刻 \(t = 0.45\text{ms} \) の場合であり、同部位における動的応力集中はまだほど大きくない。さらに時間が経過した図(b) \(\tau = 3.14\text{ms} \) の場合であり、着力点から進行してきた波は自由端で位相を逆転して反射し、さらに円弧部を回り込んで固定端方向へ伝播し、その間これらの波が重複して振幅が増大して円弧部で動的応力集中を生じたものと考えられる。この様な応力波の伝播挙動は、\(\theta \) 値によらずほぼ同様である。
以上の実験および数値解析結果より、試験片が破断するのでは波頭が両帯板交差部の円弧部に到達した直後に生じるのではなく、様々な経路から伝播してきた波が円弧部を回り込むが重複して振幅が増大した、ある一定の時間を経過した後に生じるものと考えられる。3-3.

部材の衝撃強度に及ぼす \(V \) 値と \(R \) 値の影響をみるために、動的ひずみ集中を考える。各 \(R \) 値において、\(G_4 \) による最大値 \(\tau_{\text{max}} \) およびその同一時刻における他の \(\tau_{\text{max}} \) 値を求め、\(\theta = 30^\circ \), \(V = 2.43 \text{m/s} \), \(R = 1\text{mm} \) の \(G_4 \) における最大値 \(\tau_{\text{max}} \) を基準として、動的ひずみ集中係数 \(a_{\text{f}} = \tau_{\text{f}} / \tau_{\text{max}} \) と定義して求めた。ひずみ計 \(G_4 \) の \(a_{\text{f}} \) 値は他のひずみ計による \(a_{\text{f}} \) 値よりも大きく、\(V \) 値の増加に伴って高くなっている。さらに、\(\tau = 5\text{ms} \) の場合よりも \(R = 1\text{mm} \) の方が \(a_{\text{f}} \) 値が高くなっているため破壊することが多い。そこで \(R = 1\text{mm} \) とした場合の全ての \(\theta \) 値における \(a_{\text{f}} \) 値を Fig.6 によって比較してみると、\(\theta \) 値の減少に伴って \(a_{\text{f}} \) 値が急激に増大しているため、材料破壊の危険性が高くなることが明らかとなった。

4 結言
曲げ曲げ試験片の衝撃強度を、応力波の伝播の観点から実験的および数値的に検討した。主たる結果は以下の通りである。

(1) 試験片が破壊するのは波頭が両帯板交差部の円弧部到達した直後に生じるのではなく、様々な経路から伝播してきた波が円弧部を回り込んで波が重複して振幅が増大した。ある一定の時間を経過した後に生じるものと考えられる。
(2) 帯板交差角度および交差部円弧の曲率半径それぞれが小さくなるに従って、部材が破壊する危険性が高くなる。

本研究を遂行するに当たって協力を得た、当時本学卒業生 杉川正君、伊藤幸矢君に謝意を表する。

参考文献
1) 宇田、前川、柏原 材料 12, 1346 (2002).
3) 武石、安本 材料 33, 841(1984).