1 緒 言
近年、火力プラントの高 Cr 鋼製配管では、溶接熱影響部(HAZ)に形成される細粒域におけるタイプ IV 破壊が問題となっている。そのため、溶接部の強度評価を行うためには、HAZ 細粒域におけるクーロン損傷を定量的に評価することが重要となる。一般に、溶接部の HAZ 細粒域における応力は多軸状態になっており、この応力の多軸性がポイドの発生・成長に影響を及ぼすことが知られている。しかし、HAZ 細粒域の力学的状態がポイドの発生・成長に及ぼす影響については未だ有効な評価手法が確立していないのが現状である。
本研究では、改良 9Cr-1Mo 鋼再現 HAZ 材の環境切欠試験片を用いてクーロン破断および中断試験を実施し、多軸応力下における破断寿命の推定法について検討した。また、組織観察に基づいて評価したクーロン損傷度と FEM 解析結果を比較し、各種の力模型がポイドの分布に及ぼす影響について考察した。

2 環境切欠試験
2.1 供試材料
供試材料は改良 9Cr-1Mo 鋼である。本材料の化学組成を Table 1 に示す。HAZ 細粒域の組織を再現するため、最大温度 870°C の熱処理を施し、さらに溶接後熱処理として 720°C で 2 時間保持した。熱処理後、光学顕微鏡による組織観察を行い、細粒域の組織が再現されていることを確認した。また、硬さは 202HV であった。

2.2 試験方法
多軸応力場におけるクーロン損傷を検討するため、Fig.1 に示す環状切欠き丸棒試験片を用いたクーロン破断試験および中断試験を実施した。試験温度は 600°C とし、最小断面における公称応力が 124MPa となるように荷重を与えた。

2.3 試験結果
破断時間は 2648h であった。中断試験として破断時間を 70%、50%および 26%までの試験を実施した。Table 2 に各試験後の残留した最小断面の絞りを示す。表より、破断絞りは 74.1%であり、比較的大きいことがわかった。
Fig.2 に、最小断面における公称応力を用いて破断寿命を整理した結果を示す。図中には本報で①によって得られた再現 HAZ 平滑試験片のクーロン試験結果を併せて示す。図より、切欠き試験片の破断強度は平滑試験片に比べて破断時間ではなく0.17 倍、负荷応力ではおよそ1.4 倍となっており、本供試材料が切欠き強化であることがわかる。

図には、参照応力をして、定常状態における荷重点荷重点の相当応力を用いて破断寿命を整理した結果も示す。図より、参照応力を用いることによって、切欠き試験片の試験結果が平滑試験片の試験結果と同じ曲線上に整理されることがわかる。このとき、切欠き試験片の破断時間 τ (h)は参照応力 σ_{ref} (MPa) を用いて次式のように表される。

\[\sigma_{ref} \cdot \tau^{0.1169} = 224.39 \]

(1)

3 クーロン損傷
3.1 組織観察結果
破断および中断試験終了後、各試験片を中心に含む縦断面で切断し、切断面の組織観察を行った。Fig.3 に、50%中断材および破断材の SEM 観察結果を示す。図より、ポイドは寿命の 50%にはすでに発生していることがわかる。

Fig.4 に、50%、70%中断材および破断材の最小断面におけるポイド面積率を示す。計測に際しては、測定点を中心に長手方向 400μm、横方向 300μm の矩形領域を考え、この領域におけるポイド面積を領域の総面積で割って

Table 2 Reduction of area (t = 2648h)

<table>
<thead>
<tr>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>74.1</td>
</tr>
<tr>
<td>10.7</td>
<td>Unfailed notch</td>
</tr>
<tr>
<td>70</td>
<td>5.8</td>
</tr>
<tr>
<td>50</td>
<td>2.6</td>
</tr>
<tr>
<td>26</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 1 Chemical composition (wt%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.38</td>
<td>0.42</td>
<td>0.011</td>
<td>0.001</td>
<td>8.43</td>
<td>0.04</td>
<td>0.98</td>
<td>0.2</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Fig.2 Relation between stress and rupture time in notched and plane bar creep tests

Fig.3 Creep voids in the ruptured and interrupted specimens

Fig.4 Area fraction of voids in the ruptured and interrupted specimens

Fig.5 Distributions of equivalent, maximum principal and mean stresses and triaxial factor at steady state in notched bar

は以下の通りである 4)

\[E = 100200 \text{MPa}, \ \nu = 0.3, \ \Delta a = 1.44 \times 10^{-2} \text{MPa}^n \ h, \ \eta = 11.3 \]

FEM 解析は汎用解析コード ABAQUS を用いて行った。

応力分布は 150 時間程度 (破壊寿命のおよそ 5%) で定常状態に達した。Fig.5 に、定常状態での最小断面における相当応力、最大主応力、平均応力および応力多軸度の分布を示す。図において横軸は、試験片中心部から切欠きの頂点までを[0,1]に基準化した半径を表している。

Fig.4 および Fig.5 を比較すると、相当応力の高い切欠き先端部近傍、および最大主応力、平均応力、応力多軸度が高い試験片中心部近傍で比較的多数のポイドが生じていることがわかる。このことから、ポイドの発生・成長に対して相当応力、最大主応力、平均応力、応力多軸度のいずれもが関与していると考えられる。

4 結 言

本研究では、改良 9Cr-1Mo 鋼再現 HAZ 材の環境切欠きクリープ破断および中断試験を実施し、多軸応力下における破壊寿命の推定法について検討した。その結果、参照応力として定常状態における骨格点の相当応力を用いることが有効であることがわかった。また、組織観察に基づいて評価したポイド面積率と FEM 解析結果を比較し、光の発生・成長に対して相当応力、最大主応力、平均応力、応力多軸度のいずれもが関与していることがわかった。

参考文献

1) 諸方隆志，酒井高行，屋口正次，材料，58，94(2009).
2) 本郷宏通，田淵正明，高橋由紀夫，材料，58，101(2009).
4) 本郷宏通，田淵正明，高橋由紀夫，第 45 回高温強度シンポジウム前編集，39(2007).