表面熱処理に伴う微視組織変化のフェーズフィールドシミュレーション

山形大 上原拓也

Phase Field Simulation of Microstructure Evolution due to Heat Treatment
Takuya UEHARA

1. はじめに

金属材料の力学特性は微視組織形態によって大きく影響されるため、その微視組織を制御することによって材料の強度を高めることができる。熱処理や各種の表面処理はその代表的なプロセスであり、古くから様々な手法が考案され、実用化されている。しかしながら、そのプロセス中に微視組織がどのように変化するかは経験によるとか大きくなり、試行錯誤的に手法や条件を改善されてきている。そこで本研究では、このような熱処理や表面処理による微視組織変化を計算機シミュレーションによって正確に再現し、プロセスの最適化を図ることを目的とし、解析モデルの構築を目指している。これまでに、フェーズフィールドモデルを用いた微視組織変化の解析において、応力を連成することによって複雑な組織内部に生じる微視的な応力分布解析を行う方法を提案し、デンドライトなどの様々な微視組織を対象としたシミュレーションによってその有用性を示してきた。また、前報2)では、多結晶組織を対象とした解析を行うため、Steinbachらによるマルチフェーズフィールドモデル3)に応力の連成効果を加えた基礎式を示し、その簡便な解析例を示した。本報では、このモデルを利用し、表面熱処理過程における微視組織変化を対象とした解析を行う。対象とする微視組織は、熱処理前の母相から、冷却によって生じる第2相のほか、急速冷却によって表面付近に生じる第3相を表現するモデルを考える。このとき、母相から第2相および第3相への相変態に伴う体積変化によって応力が発生することを想定し、応力の計算を行う。ただし、簡単のため、等方的な弾性応力のみを想定することとする。

2. 基礎式

本研究では、Steinbachらによるマルチフェーズフィールドモデルに応力ひずみを連成した以下の基礎式を用いる。

\[\dot{\phi}_i = -\frac{2}{n} \sum_{j=1}^{n} m_{ij}(g_{ij}^2 + g_{ij}^p + \varphi_j^m) \quad (1) \]

ただし、

\[g_{ij}^2 = f_{ij}\sqrt{\phi_i\phi_j}, \quad g_{ij}^p = \Sigma_k(w_{ik} - w_{jk})\phi_k \quad (2) \]

\[g_{ij}^m = \Sigma_k(a_{ik} - a_{jk})\nabla^2 \phi_i, \quad \varphi_j^m = B_{ij}\sigma_m\phi_i \phi_j \quad (3) \]

である。ここで、\(\phi_i \)はマルチフェーズフィールド変数であり、想定する相の数だけ存在する。ただし、\(\Sigma = 1 \)である。本研究では、相としては、母相、第2相、第3相を想定するが、このうち第2相についてのみ、多結晶組織を仮定する。そのため、\(\phi_0 \)としては、母相に\(\phi_0 \)、第3相に\(\phi_3 \)を割り当て、第2相については結晶粒のそれぞれにひとつの\(\phi_2 \)を割り当てる。また、\(m_{ij} \)はパラメータ、\(n \)はその点に存在する相または粒の数である。式(1)における\(g^2, g^p \)および\(g^m \)はいずれもSteinbachらのモデルに含まれた項であり、\(f_{ij}, w_{ij}, a_{ij} \)はいずれも\(i \)番目と\(j \)番目の相または粒間に依存するパラメータである。

3. 計算モデルと条件

本報では、材料の表面付近の組織変化を対象とする、二次元長方形領域を計算領域として設定し、600×200の格子に分割する。境界条件としては、上側長辺を表面、それ以外の境界条件は断熱境界、力学的には自由表面以外は変位なしの拘束条件とした。フェーズフィールドは勾配が0となるように与える、初期状態は一定母相とする。第2相および第3相については、各相の核を与え、核からの成長によって領域が広がるものとする。

第2相については、多結晶組織を想定するため、すべての核に異なる識別指標を与えると、\(\phi_i \)の数が計算時間に影響するため、本報では結晶核の数は\(N=100 \)とするもの、識別する\(\phi_i \)の数は50とする。このとき、同じ識別記号をもつ粒は一体化化され、それ以外は結晶粒が形成される。第3相については、結晶核を複数設定するが、識別せず、すべてを\(\phi_3 \)で表す。このため、第3相には結晶粒は形成されない。実際の金属材料においても、表面層には粒界のまわれない析出物群が現れることがあり、このモデルはこれを想定したものである。

この領域に対し、全体を加熱した状態からの表面冷却による熱処理過程を考より、このためには、表面の熱伝達係数をえた熱伝導解析を行うべきであることであるが、3相モデルの有効性を確認するため簡単化し、熱伝導解析は連成せず、固定した温度分布に対する計算を行うこととする。図1は今回の計算に用いた温度
図2(a)-(c)はそれぞれCase1～3における計算結果を示す。各図(i)は微視組織分布を示しており、青が相1、赤が相3、それ以外は第2相で、第2相については結晶粒ごとに色分けがなされている。また、図(ii)は応力分布を表しており、x,y方向成分の平均応力を用いている。

図1に示したように、Case1では表面の温度が低く、第3相の析出が起こるとともに、やや内部では第2相に相変態が起こり、その多結晶組織が得られている。これに対し、Case2では表面の冷却が十分でなく、第3相が析出しないため、表面から内側にかけて第2相の多結晶組織となっている。また、Case3では、表面の温度が低く、第3相が析出するものの、冷却の影響領域が浅いため、図2(c)-(i)に示すように、第3相の表面層が薄く、所々において第2相が表面に露出した状態となっている。

このときの応力分布をみると、母相からの変態では、第2相、第3相とともに膨張が起こるため、圧縮の応力が発生する。また、膨張率は第3相の方が大きいため、第3相の現れるCase1とCase3で表面の圧縮応力が高くなっている。ただし、Case3では、第3相の表面層が厚く、第2相が表面に露出している点で応力が低くなっていることがわかる。

5. まとめ
表面の圧縮残留応力は、強度面において有益である。今回の計算では、第3相の表面層が表面圧縮に寄与するとともに、均質な表面層を作ることが重要であることを示している。相変態の物理的モデリングや、精度の高い応力解析法の導入、熱応力の考慮など、さらなる改良が必要であるが、本報では、この手法が熱処理や表面処理による微視組織の予測とプロセスの最適化に有効であることを示すことができたといえる。

参考文献
1) 上原拓也, 福井基枝, 大野信治, 材料, 57(2008), 231-236.
2) 上原拓也, 日本機械学会第24回計算力学講演会講演論文集(2011), 326-327.