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Summary

Using the Maxwell-Betti’s reciprocal theorem, the general formulation transforming the
fundamental differential equation to the integral equation in the theory of elasticity is deduced.
In similar ways as in hydrodynamics, boundary integral equations which are represented by
either source and sink or doublet distribution are derived. The formulations of the boundary
integral equation for various problems, i.e. the two dimensional elastostatics, the two dimen-
sional elastodynamics, the three dimensional elastostatics and the plate bending problems are
shown and studied especially regarding the property of their kernel function in concern with
their numerical integration. To verify its usefullness and accuracy, some numerical examples

are shown.

The proposed equations are especially usefull for stress concentration problems

and diffraction problems during passage of elastic waves in the infinietly extended elastic

medium.

1. Introduction

In the recent years, the singularity method,
meaning a method of solving boundary value
problems by integral equations in regard to
the boundary singularity (so-called the Bound-
ary Element Method; BEM), has been widely
applied to the boundary value problems in the
theory of elasticity, and a number of related
reports and text books have been published.?

The idea to solve the boundary value pro-
blem in the theory of elasticity by transforma-
tion the fundamental defferential equation
into the integral equation has already appeared
in the early 1900’s. Love® sketches that the
integral approach has been exploited by Betti
and Fredholm.

The outstanding feature of the BEM is that
it reduces of a dimension of problem. The
system of equations resulted from discretiza-
tion of the boundary integral equation becomes
smaller than the system in the finite element
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method (FEM), in which the domain of the
problem under consideration is in discretized
into a number of elements. The FEM may be
not appropriate to treat the problems of an
infinite domain because its dimensions be-
comes very large and also it is difficult to
defines boundary condition for infinity. The
BEM has no such difficulties in solving these
problems since the discretization is needed
only along the boundary of the body not as
like in its whole domain as the FEM.

However this method has not been tried
positively until very close days. The reason
may lie upon the facts that the kernel functions
of the boundary integral equation are com-
plex and have strong singularities.

In this report, we develope the BEM for
various. problems in the theory of elasticity
and show its usefullness. It is most important
in applying the BEM that the boundary
should be discretized in sufficient number of
segments and the singularities of kernel func-
tions shold be properly integrated.

In chapter 2 and 3, we show the general
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formulation by transforming the fundamental
differential equation in the theory of elasticity
into the integral equation and show the related
important theorems. We propose the simpli-
fied boundary integral equation of displace-
ment field making use of simple singularities
similar to source and sink or doublet in hy-
drodynamics. In the following, we show con-
crete formulations of the BEM for various
problems, i.e. the two dimensional elastosta-
tics, the two dimensional elastodynamics, the
three dimensional elastostatics and the plate
bending problems and investigate the nu-
merical property of the kernel functions. Also
we make some remarks on the numerical com-
putation.

2. Fundamental Equations in the Theory of
Elasticity

Before formulating the boundary equations,
we summarise the field equations.®

Let D be a domain which may be interior
or exterior on the boundary C, as shown in
Fig. 1. Under the basic assumptions of small
displacement, homogeneous and isotropic
linear elastic material, the equation of motion,
Hook’s law and the strain-displacement rela-
tion are expressed as follows;

i & 06 | 5
P 5 =25, + X, 2.1)
3
5ij:A8ijkEIék7c+2Ge-ij (2.2)
_ 1 [od. (%Zj)
e”_2<6xj ox; (2.9)
X2
u;

Fig. 1

Coordinate systems

1=1,2,3 and j=1,2,3
where #@j, 7:5, €5 and &; are the displacements,
stresses, strains and body forces which are
function of position in space and time, p,
A and G is density, Lame’s constant and shear
modulus and d:; is Kronecker’s delta.

We use the expression either xi, s, Xs, -+
or x, v, 2+, according to the circumstances,
but there will be no confusion.

Substituting Eq. (2.2) and Eq. (2.3) into
Eq. (2.1), we obtain the Navier-Cauchy equa-
tion,

0%i; oy

where
3, ou
T:J—lvax.)
g 0 0
dx:? 0xs? 0xs®

4 is the Laplacian, assuming that the body
forces dose not exist.

If the displacement field is in time harmo-
nics with circular frequency, we usually use
abbreviation such as;

(2.5)

@i(21, L2, s, £) = Re[wi (21, T2, 23) € "]

where ui(2, X2, £s) are complex vaiables
which is independent of time. R.[ ] denotes
the real part of the complex expression, and
i=~/—1. '

Substituting Eq. (2.5) into Eq. (2.4), we
will have the governing equation for complex
displacements,

dy
2\, —
(A +k )%1,“{‘ a&xi 0 (26)
where

o PO

k G

A+G kP
s PO
K= A+2G

k and K are the wave numbers of transverse
(SV wave) and longitudinal (P wave) waves
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respectively.

In the special case of w=0 in Eq. (2.6) re-
presents the basic equilibrium equation in
terms of displacements in the elastostatics.
We note that ui(x:, o2, £s) can be considered
as a real function in the elastostatics.

Now, the problem is to solve the fundament-
al differential equation (2.6) or Eq. (2.8)
under the given boundary conditions.

When the displacements are known, the
stersses can be obtained by following differ-
entiation.

Out

Ous | Ouj
=A% 21 P +G<axJ axi> 29)
Surface tractions are expressed as
Z Oij 7 — on (2.10)
0x;

where # is the outward normal vector on the
boundary, as shown in Fig. 1.

3. Reciprocal Theorem and Boundary Integral
Equation

3.1 Reciprocal theorem

Let us consider the two elastodynamic
states. They have and the same medium and
vary sinsiodally in time with the same circular
frequency. These two states are distinguished
by the superscripts (1) and (2) respectively.
Then following functional is introduced,

Lu®, u®) = SD [Ux—Ubp]dv (3.1)
where
Ux= 23} g’?ﬁwuww
N 32 1 (3.2)
Up=3 315 e

If #® are equal to #®, then Uk stands for the
kinematic energy stored in D and Ubp stands
for the complex elastic deformation energy
and their difference is to be Lagrangean but
they are not the time averaged value. So that
L is not accurate Lagrangean. We call it the
modefied Lagrangian function. It is clear
that there exists the reciprocal relation in

Eq. (3.1), that is,
f,(u“", u®) :f,(%m} u®)

Integrating Eq.

(3.3)
(3.1) by parts, we have

E(%m’ u®) =

1 3
5 S SjusPr ds

2 3
Gk S Z [1t§1)M§2)+%%§1)

@
{AM(”-FOc %7 } :!dv

If #® and #® are regular in D and satisfies
the fundamental differential equation (2.1),
then we have

3
Sl uPrds

CJj=1

Z(M(l), u®)= ég

and Eq. (3.3) can be written in the following
form as the reciprocity between the boundary
displacements and tractions.
3 3
S 2 uPrPds= S uPrPds (3.4)
Cji=1 Cj=1

This formula is well known as Maxwell-Betti’s
reciprocal theorem.**>**’

3.2 Boundary integral equations and boundary
conditions
Let us introduce the fundamental solutions
which satisfies the Navier-Cauchy equation
(2.6) and has an appropriate singularity;

UHP, Q)

where
P =(xpi, Xpz, Tps)
Q E(.Z'Ql, XQ2, .'L‘Qa)

U7(P, Q) means the influence function which
represents the displacement at the point @
in the xm direction when the concentrated
force of unit magnitude acts at the point P
in the rm direction when the concentrated
force of unit magnitude acts at the point P
in the x; direction. Then we can obtain the
function T7(P, Q) substituting U7 (P, Q) into
Eq. (2.8) and Eq. (2.9). T7(P, Q) means the
influence function which represents the dis-
placement at the point Q in the xwm direction
when the displacement of unit magnitude acts
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at the point P in the x; direction.

Let us now apply the reciprocal theorem,
Eq. (3.4), in a domain D, bounded by the
surface C and a small circle around the point
Q, taking two states as follows:

{u$P, 7y ={us, 75}
{uf®, 77y={U7(P,Q), T7(P,Q)} .

Then we obtain the following representation
of displacements;

un(@) =\ S [(P)THP, 0

—mi(P)U3(P, Q)lds»  (3.5)

m=1,2,3

This equation permits us to solve the bound-
ary value problem in the theory of elasticity
by integral equation.

Eq. (3.5) is the basic equation of BIEM.
The following boundary value problems are
classified in the first place: the interior pro-
blems and the exterior problems where the
boundary C consist of several boundaries.

In the interior problems, we may apply
Eq. (3.5). For the steady-state elastodyna-
mics, Niwa et. al.'®»'" applied the boundary
equation (3.5) to eigenfrequency analysis.
Eigenvalues can be obtained as a parameter
for which a non-trivual solution of homoge-
neous boundary integral equation exists.

In the exterior problems, there is some differ-
ence in the solution due to the property of
material between domain D and D, which
means complementary domain of D. In this
case, the displacements must be continuous and
the tractions must be in equilibrium on the
boundary C.

i) Assuming the rigid boundaries, we ob-
tain the tractions 7¢”(P) when the ex-
ternal forces act on the boundary.

ii) Forcing the boundary C to deform itself
by the displacements u;(P), we define
the traction 7¢™(P) on the interior
domain D and 7$"9(P) on the exterior
domain D, respectively

Then the equiriburium condition on C is as
follow.

(P47 (P)+7(P)=0  on C  (3.6)

Differentiating and transforming the Eq. (3.5)
to the representation of boundary tractions,
we can determine the boundary displacements.
3.3 Representation by a singularity similar to
source and sink or doublet in hydrodynamics

When we investigate the exterior problem
using previous boundary integral equation,
it will be complex and inconvenient because
two kernel functions U7(P, Q) and TH(P, Q)
are nessesary to treat it.

Let us try to simplify these equations.
Let us consider the configuration shown in
Fig. 2. Let D be a exterior domain and let D
be the complementary domain of D. Normal
vector # has the same direction as defined in
Tig. 1.

Changing the sign of Eq. (3.5), the displace-
ments at point () are represented respectively
in D and D as follows;

—\, S AP)THP, Q)= TAPYUS (P, O)]dse

=Um (Q) in 12

=0 in D 87)

Assuming that the material of domain D is
same as of domain D and function #{”(P) is
regular in D, the integration around the point

X,
S n
\< OX
P
C D
0
(a) xl
X,
D
0
(b) X,

Fig. 2 Exterior domain and Interior domain
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Q vanishes by the Green’s theorem. If the
point Q exists in the domain D, we have the
following formula,

- S VWP (P)T3 (P, Q) — 7P (P)UF(P, Q)] ds=

Cj=1
=0 inD
=—u®(0) in D

Adding Eq. (3.7) to Eqg. (3.8) and assuming
the total tractions vanishes on the boundary
C, then

(3.8)

7;(P)+7P(P)=0 on C (3.9)
We have
un(@)== | S (P +up(P))
T7(P,0) dsr (3.10)

On the other hand, assuming the total dis-
placement, instead of tractions, vanishes on
the boundary C,

u;i(P)+u(P)=0
We have

on C (3.11)

1m(0) = SC ,5; (75(P) 1P (P)}UR(P,0) dsr
(3.12)

On the analogy of the hydrodynamics, we may
call Eq. (3.10) and Eq. (3.12) the representa-
tion of source and sink or doublet distribu-
tion.42»3H®

In the elastodynamics, we may concider the
plane harmonic waves as the regular function
u{’(P) and 79°(P) in D. Then, the boundary
condition shown by Eq. (3.9) is equal to the
one of a cavity hole. Furthermore, if we add
u’(P) to both sides of Eq. (3.10), we obtain
the Fredholm’s equation of the second kind
whose unknouwns are the total displacements
u;(P)4+u$(P) on C.

On the contrary, the boundary condition
shown by Eq. (3.10) is equal to the one of a
rigid inclusions and if we add «#$’(P) to both
sides of Eq. (3.12), we obtain the Fredholm’s
equation of the first kind whose unknowns are
the total tractions 7,(P)-+7%(P) on C.

In the elastostatics, we consider the uni-

form stress fields as the regular functions
u{’(P) and 7°(P) in D. Then we can investi-
gate the stress concentration problem around
a cavity or around a rigid inclusion using Eq.
(3.10) or Eq. (3.12).

3.4 Numerical procedure

Numerical procedure to solve boundary
value problems by making use of, for example,
Eq. (3.5) is as follows. At first the boundary
may be divided into N elements. (If the pro-
blem is three dimentional, the boundary ele-
ments are parts of the external surface of the
body. If the problem is two dimensions, they
are line elements.) Assuming the unknown
quantities are constant for each element and
giving the boundary condition at the middle
point of each element, we can solve them as
simultaneous equations.

Recently, a trend toward the higher order
element which means that the unknown
quantities are not constant for each element
has appeared. Howevere, if the integration of
the kernel functions over each element are
done exactly, we might obtain accurate enough
solotion by using constant elements.

Generally speaking, the accuracy of the
BEM analysis depend on the number of ele-
ments and on the accuracy of numerical
integration, especially, of singular kernel. We
can not obtain the exact value of calculations
near the boundary if higher singular integral
are not carried out carefully.

In this report, we also study the numerical
property of kernel functions for various pro-
blems and improve the accuracy of its integra-
tion.

4. Formulation for Various Problems -and
Numerical Examples

4.1 Two dimensional elastostatics*®

4.1.1 Representation of Airy’s stress function
In the two dimensional elastostatics, Airy’s

stress function can be applied. Let f be Airy’s

stress function. The fundamental differential

equation to be satisfied is as follows,

A*f=0 (4.1)
The fundamental solution of Eq. (4.1) may
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be taken as follows;

f=S(P,0)= (4.2)
where
R=PQ=[(xe—xr)*+(ye—yr)*]'

E: Young’s modulus

Relations between the stress function and
the displacements and the tractions are derived
as follows,

=T:(P,Q)=" a;y S(P,0)
T2=Ts(P,Q)= —&;agx—PﬂP,Q)
w=U(P,0)=E(P,0) —E%%S(P,Q)
w=T(P.0)=H(P,Q) =5 5 (P.0)
aZPE(P Q)=—4 —H(P,Q)= —APS(P Q)

(4.3)

where 0/0sr denotes the differentiation tangen-
tial to boundary at the point P.
We take the two states in Eq. (3.4) as:

{Us(P,Q), Ts(P,Q)}={uP, 7%} and f={u, 7},

we obtain as follows

7=, 2P TAP.Q)
—n(P)UAP,Q)1dsr  (4.4)

Although U,(P, Q) and T;(P,Q) are the dis-
placements and the tractions by the singularity
S(P, Q) respectively from above equation.
They are also stress functions at the point
when the unit magnitude of tractions and
displacements act on the point P respectively.

We can easilly introduce the representation
of displaerments from Eq. (4.4) as same as
Eq. (3.5) (See appendix A).

The representation like as source and sink
or doublet distribution are as follows,

1=\, SHn®)+ @UAP.Q) dse
(4.5)

where
ui(PY+u(P)=0  on C
and
70 ==\ | S (P +up PRTAP,Q) dsr
(4.6)
where
7i(P)+1P(P)=0  on C

Differentiating Eq. (4.5) which is used in ob-
taining stresses, Nishitani’s equation'® can be
derived.

Lastly, integrating Eq. (4.6) by parts, we
have

0=\ |P) 550

0

—3(P)ES(P,Q)J dse (4.7)

where

i (0)
PR (o0s+1l®)

Es—

_0 )
6—5?(1571—[—1“ )

un and us indicate the normal and tangential
components of displacements on the boundary
respectively. It allows us to directly calculate
the stress concentration around the cavity
hole by solving the Eq. (4.7).

4.1.2 Property of the singularity of the kernel
function
a) Kernel functions of displacements

As shown in appendix A, the kernel func-
tions are very complex and the integration
must be done carefully. To investigate the
property of singularity of the kernel functions,
we will study the integration over the arbitrary
element PuPn.1 on the boundary as shown in
Fig. 3.

At first, all kernel functions, T7(P, Q), are
tangential derivative of some functions so
that the integration can be done easily. For
instance,

. ,
S " T(P,Q) dse
Pn

. Py 6 1 1+V
—Spn 58;;1?.276—*_ S stﬁ] dsp
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1

:—2;(071.(.1—0%)
14v . .
+ g; . (sin 2011 —sin 20,)

The integration of T:(P, Q) is shown in Fig.
4 for the example. The range of integration is
taken between the point P» (—1.0,0.0) and the
point Payi (1.0,0.0) on the x-axis. The ob-
servation point Q(0, y) is moved from the
origin to a arbitrary point of y-axis. As
shown in the figure, the horizontal axis denotes
the distance of the observation point @ from
the origin. The vertical axis denotes the
integrated values. Taking the limit from the
interior domain to the boundary, the integra-
tion of the first term of T\ (P, Q), Ouny1—0n,
reaches 7. From this result, it is obvious that
the behaviour of is the mist dominant factor
in the kernel functions 7:'(P, Q). For the
another kernel function U7(P, Q), by trans-
forming the variable suitablly, the integration
can be done analytically. For example, the
integration of log R will be as follows:

Fig. 3 Local coordinate systems for calculation of
kernel functions

P?’L
S og R dse

P

_S%Hlo { —h } hdo
D & cos (—an)) cos® (—an)

where
h=—R cos (0—an)
sp=htan (0 —on)

therefore

P
S m log Rdsp
P

— Opt17 %, :
:h[tant{log(zés%—>——l}+t} o g
g —a .

n n

= — Ry41 810 (Ons1—otn) (log Ru1—1) Tig. 5 Integration of kernel function U,;!(R, Q)

+Rn sin (Hn'—OLn> (log Ry— 1)
—l']’l(gn-m—‘@n)

Taking the range of integration same as in
the case of T:!(P, Q), we show the integration
of U:Y(P, Q) in Fig. 5. In this case, the most
dominant singurality of kernel function U.!
(P, Q) is the term of log R.

b) Kernel functions of stresses

After displacements and tractions are ob-
tained, stresses can be calculated by the
following formulas.
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0* 4.1.3 Two dimensional semi-infinite elastic

o=(Q) 6y3f (@) space problems®
2 9° The one of the merits of the BEM analysis
:SCE[%J’(P )WTJ'(P Q) is that the problems can be investigated by
\ distributing the singularities on the finite
_Tj(p)%(]j(p, Q) ds» (4.8) boundary only. Hence, when the boundary
Ye has an infinite part, this merit may be lost.
(0)= 0 £0) In the case of infinite the straight boundary
0xg~ which may occure frequently in practice, if
o° we choose the fundamental solution to satisfy
TW(Q):—mf (@) the boundary condition on the interface

In this case, assuming the displacements and
the tractions are constant on the boundary
elements, it will be difficult to obtain the
exact values for the stresses on the boubdary.
One of the reasons is that the dominant
part of the singularity of the kernel function
0%j0y - T (P, Q) etc. is the order of 1/R* and
it is difficult to evaluate it numerically.
Therefore, to obtain the exact solution, we
have to assume that the displacements are
varied as linear or higher order over each
elements or to take any other similar means.

Here, we propose another convenient meth-
od which permits us to obtain accurate stresses
on the boundary and in the interior domain
by constant elements. It is a method to
integrate Eq. (4.8) by parts, namely

: o

7Q)==\ | ssP) . T TuP.0)
o >

252" P o,y

2

T+(P,Q)

0

02
+T2(P) 81/5

U.(P,Q)

U. (P, Q)} dsp (4.9)
Then, the order of the singularity of the krrnel
functions is reduced to 1/R. Integration of
this type can be done analytically in the same
manner as in the previous section. We can
obtain exact stresses on the boundary by
Eq. (4.9) and 0u;/0se-(P) in Eq. (4.9) by nu-
merical differentiation.

identically, we may not need to put elements
on the surface.

For such fundamental solution of the stress
function to satisfy the boundary condition on
the interface we have the followings:

S(P,0) :—8%122 10g<7§,—> (4.10)
R=PQ=[(re—xr)"+(yo—yr)*]'*
i =[(xq—xr)*+(Yo+yr):]'*

where the interface is placed along the x axis.
The singularity of this kernel is the same as
the one of q. (4.2) and the various representa-
tion is the same as in that case. (Kernel func-
tions are in appendix B.)  Although the
solution of the semi-finite elastic space pro-
blem has been obtained by Nishitani'®’, the
kernel functions are very complicated.

4.1.4 Numerical examples

Fig. 6 shows the stresses around a circular
hole in an infinite elastic plate under the
uniform loading. The accuracy of the com-
putation of the stress concentration factor of
of an elliptic hole for various aspect ratio
with the number of division N (the part of a
quadrant) is plotted in Fig. 7. The relation
between the accuracy of computation and the
number of division is linear on a log scale.
Therefore, the error of computation decreases
reciprocally as the number of division in-
creases.

Fig. 8 shows the stress concentration factors
of a semi-elliptic notch in a semi-infinite
elastic plate under the uniform loading. The
marks in the figure are results of Nishitani’s
caliculation®*”.  Both results are in good
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Fig. 6 Stresses around a circular hole in an infinite
elastic plate under uniform loading
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Fig. 7 Accuracy of the computation of the stress
concentration factor of an elliptic hole for
various aspect ratio with the number of
division N (the part of a quadrant)

agreement.

Finally, Fig. 9 shows the numerical and the
experimental results obtained from I-shape
beam under the uniform bending. The as-

Comay 2

o oz
srE M2
Y
o Nishitani
S Pretsksnét
10 | meino
5 L
2 3 4 5 6
0 i bg
Fig. 8 Stress concentrations of a semi-elliptic

notch in a semi-infinite elastic plate under
uniform loading

1000 Kg 1000 Kg
64
6 6 g) g@m 6 6 I
~ ~ ~ ~ (&)
6 6 6 15.20R 6 46 66L I‘
Py T
200 —4~—200 —}—200 —}—200 —+—20C—4—200—] {50k
10+
R
0
S]
— Cal.
o Exp,
- .
0 ¢

-5 J
Fig. 9 Numerical and experimental results ob-

tained form I-shape beam wunder uniform
bending

sumption of calculation is that the beam is
considered as the solid structure constructed
by the plate members and the displacemens of
the contact lines between the web and flanges
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are dependent on the components of the
displacements along the contact line and in-
dependent of the components of the one
vertical to that line. Calculations are in good
agreement with experimental results.

4.2 Two dimensional elastodynamic problems*®
4.2.1 Fundamental solutions

Let us introduce the fundamental solutions
satisfying the Navier-Cauchy’s equation of two
dimensional elastodynamics and the radiation
condition as follows,

1 0*

Ui (P,0)= k* dxpOxp,

(2)
e [H (RR)Sim+—5

{HP(*R) —HS”(KR)}} (4.11)

where H§? is the zero-th order Hankel function
of the second kind.

Substituting Eq. (4.11) into Eq. (2.9) and
Eq. (2.10), we may obtain the kernel functions
T7(P, Q) (See appendix C).

To ivestigate the property of the kernel
functions U}(P, Q) and T7(P,Q), we begin
with the property of the Hankel function. In
the vicinity of the origin, it behave like as
shown in reference 15),

2
HP(RR) — —2-log R
( )kR<<1 m o8
HP(ER)— HPO(KR) — iV 2R log R
kR<<1 4
KRK1

Substituting these approximations into Eq.
(4.11), we obtain,

UpMP,Q) — log R 8jm

kR<<1 2z
KR<1

_ 14 0? (
167G dxpdxp,

R*log R)

This becomes the same kernel function with
elastostatics. In the same way as mentioned
above, it is obvious that the property of
kernel functions T7(P, Q) for small arguments
are the same with that of elastostatics.

Applying these properties to the integration
of the kernel functions, we propose an accurate
integration method as follows. Namely, let
us separate the singularity term from the kernel

function of the elastodynamics as follows.

UMP,Q)=[U%P,Q)—UrMP,Q) i)
+ UP(P,0)sensicr (4.12)

where U7(P, Q)esuuey denotes the kernel func-
tions of the elastostatics.

Then, the integration of the first term of
the right hand side of Eq. (4.12) can be done
easily by the simple numerical integration
such as trapezoidal rule, because those of
singularities are eliminated and then the
integration of the last term of the right side
of Eq. (4.12) can be done analytically by the
same way as in the elastostatic case. For a
simple example, we show the integration of
the imaginary part of H®(KR). In the same
mammer as in the representation of Eq. (4.12),

Yo(KR) = {YO(KR) —%log R} +-72-T—1ogR

where Yo( ) denotes the zero-th order Bessel
function of the second kind.

Fig. 10 shows the accuracy of integration of
this method.
4.2.2 Numerical examples
a) Rigid circular inclusion

We try to calculate the stresses around a

,o(oo V)

F?\l
(10,00 )(xooo>

o,\J

Exact 1.274139

PN»‘{
I = & Yo(RK)ds
N
Present  method
‘o Trapezoidal rule
K=10

Fig. 10 Integration of Bessel function Y(KR)
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Fig. 11 Stresses around a rigid c
of radius a subject to th
harmonic P and SV wave
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e incident plane
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Error X ”
(0/0) 7
1.0 | 4
0-1 E‘ ":‘
E SV-Wave 3
()
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0.01 - L 1ot I3 lv!:
10 50 N 100

Fig. 12 Accuracy of the computation of the stress
concentration factor of a rigid circular
inclusion with the number of division N
(divided allover length) for various wave

numbers (at #==0°, SV wave)

rigid circular inclusion of radius a subject to
the incident plane harmonic P and SV wave.
Fig. 11 shows the principal stresses due to the
incident P and SV wave. Curved lines are
analytical solutions®®. Fig. 12 shows the rela-
tion between the accuracy of the computation
of the stress concentration factors (at 6=0°)
and the number of division N (divide overall
length) for various wave numbers. Although
there are some deviations in the accuracy
under certain circumstances. The calculation
errors are under 1 per cent when the number
of division is more than 40 in the case of the
short wave length of Ka=1.0.

b) Circular cavity

Fig. 13 shows the principal stresses around
a circular cavity of radius a due to the incident
P and SV wave.

Fig. 14 shows the principal stresses versus
the wave number of the incident P and SV
waves. The results are also in good agreement
with the analytical solutions®»?*,

4.3 Three dimensional elastostatic ploblems®
4.3.1 Fundamental solutions

The fundamental solutions of
Cauchy’s equation are as follows,

Navier-
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Fig. 13 Stresses around a circular cavity hole of
radius a subject to the incident plane
harmonic P and SV wave

3.0 1

%4,

2.0 ¢
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. 3»/ -
) 4 oa 7l SV Wave

O%xw i "ﬁl )

g o e Cal
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ka
(b)

Fig. 14 Principal Stresses versus wave number of
the incident P and SV waves

1 1
UnP, Q=74 = [*R‘&‘m

1 J’R
~ 4(1—v) dxpdxp, (+13)
Substituting Eq. (4.13) into Eq. (2.9) and Eq.
(2.10), the kernel functions 7T7(P,(Q) becomes,

“m ____,];__ . __a___ _.,1._
T3P0 = 47 {&m dnp <R>

dxp, 0 < _1_>

“onp Omp,\R

1 _u(?xpj 0 <_1_>
l—vy Onp Oxp, \R

+

B 1 0 < 0*R >}
2(1—v) One \Oxp,0xp,
(4.14)
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NS

Fig. 15 Solid angle

The singular properties of the kernel func-
tions are similar as in the two dimensional
elastostatics and 1/R and 9(1/R)/0nr is the
main parts of the singularity of the kernel
function U7(P, Q) and T7(P, Q) respectively.

Niwa et al.?2®’, Manori??’, Webster?” and Bai
et al.?® investigated the integration of the
kernel function analytically. For example,
we may show the integration of 9(1/R)/0nr
over the arbitrary element.

g /1)
Ssn%<§)d31’
_{ & 9xp 0 <_L>
_Ssnj=1 ne o, \R )T
=S COS(%’E)dstg 0
’f’n S’IL

where 42 denotes the solid angle which the
area ds is seen from the point Q, as shown in
Fig. 15.

If Q lies on the boundary S» considered, the
solid angle becomes to 27. In similar way,
integration of 1/R and its derivatives can be
done analytically.

4.3.2 Axi-symmetric elastic problems

Let us consider the stress analysis problems
for an axi-symmetric body around the x-
axis subject to axi-symmetric loads or dis-
placements.

The axi-symmetric elasticity problems can
be divided into two parts of problems. The
one is the expansion and contraction problem
and the other is the torsion problem.

We introduce the cylindrical coodinate sys-

X3

Fig. 16 Cylindrical coordinate systems

tems, as shown in Fig. 16.

X=X

ZL2=7cos b

) (4.14)

Ts=7sinf

P=(xp,7r,0p), Q=(xq,rq,00)
Because of the symmetry of the problems, the
displacements and tractions are constant
quantities on a circumference of radius 7.
And they become the function of x and 7 only.
a) Expansion and contraction problems

Let the displacements and tractions under

consideration be as shown in Fig. 16.

wi=u(x,7) , Ti=T«(2,7)
wr=vr(x,7)cosf , Te=Tr(x,7)c0s0
ws=vr(x,7)sinf , Ts=7-(2,7)sinl

(4.15)

Substituting Eq. (4.15) into Eq. (3.5), we ob-
tain the boundary integral equation of un-
known u, vr, Tz, Tr,

u(Q)=\ [MPITP.0)+u(P)TP.0)
—72(P)U'(P,Q)
—Tr(P) U’rl(PQ)] rpdsp
Q)= [MPITAP.0)+u(PITAP.0)
—o(P)U(P,0)
—1(PYUA(P,Q)]7pdsp

(4.16)
where

UA(P,0)= SO UP,0) dbr
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Ur(iP,Q)ZSZI (U2 (P,Q) cos 0p (+:17)

+ U (P,0) sin 0] ds»

etc.

b) Torsion problems
The relations between {uj, 75} and {v,, 7,}

are as follows,

w1=0 , 71=0
us=—v,(x,7)sinl, Te=—1y(x,7)sinb
Ts=To(x, 7) cos O

(4.18)

us=v,(x,7)cosf ,

Substituting Eq. (4.18) into Eq. (3.5), we ob-
tain

Uo(Q) :SC[WE(P)TZI(P,Q)"‘Tan(P,Q)]i”P dsp
(4.19)

where
2z
U,(P,0)= S [~ US(P,Q) sin O
0
+Us*(P,Q) cos 0r| dOp

T,(P,Q) = Sz [—T(P,0) sin O

+T3*(P,Q) cos Op] dbr
(4.20)

The integration of the kernel functions are
composed of following integrals;

. 1 (% dfp
5= 4ar So R*—
Z%S“’e_mmmz Toltre) Joltre) dt
0
, 1 2
S _?I?So Rdbr

:Visw@~IxQ—XPU]l(zfﬂ’P)]O(WQ)“d;
. .

e
2 ) b
Xog—Xp
Ty
_ L (reostry reg 10,
P= ngo R ng—VQS 7q Osp

2r
P* :41778 RcosOrdir
0

:é_gooe—|xQ~xpll]1(),‘7/p)]1(tﬂ’Q) dt
0

These integrals S, S*, P, P* can be expressed
by the complete elliptic integrals™” as shown
in appendix D and the kernel functions shown
in appendix E.

The properties of the kernel functions are
in the same manner as the two dimensional
elastostatics. The main part of the singularity
of the kernel functions U7}(P, Q) is logarith-
mic, that of T7(P, Q) is the normal derivative
of log R.

On the integration of the term 0S/0ne, the
new function 7" may be introduced,

TZ%I:g«;@_ lxq=xplt [i(tve) Jo(tre) dt
0

Then S and T have a relation as follows;

oS __oT

VP =
onp Osp

Thus, the integration of 8S/dne over. the ele-
ment is carried out directly as;

Loy 3S Porr 0T
7P dsp=— ——dsp
P onp P Osp

n

- [T}PN—H
Py

For example, taking the range of integration
between the point P» (1.0, 5.0) and the point
Puyi (—1.0, 5.0) and moving the observation
point Q (O, rq) from the origin to a arbitrary

n

-—1—- ' p“l:‘ 25 ds
F:)n anﬂ Puran" ’
Q(0,r,)
| z/- 05
—— Z
Ll 0
A 4 5

Fig. 17 Integration of » 9S/on
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point of r-axis, we may calculate the above
integral as shown in Fig. 17.
4.3.3 Numerical examples

Fig. 18 shows the stress around a spherical
cavity in an infinite elastic medium under
the uniform loading. The accuracy of compu-
tation of stress concentration factor of elliptic
cavity for various aspect ratio is plotted with

%6

Y6
2.0

JLELELIL 4

-1.0 -
Fig. 18 Stresses around a spherical cavity hole in
an infinite elastic medium under uniform

loading
10 .
F % j
Error[ -4 -
R 3 N
2
! Fol \ E
0.1 e e - -
o OT: ]
Lo o 7
- l: J
—~  2Au - B
O‘O] 1 ' '
5 10 20 30 40

N

Fig. 19 Accuracy of computation of stress con-
centration factor of elliptic cavity hole for
various aspect ratio with the number of

division N

the number of division N of a quadrant in
Fig. 19. Fig. 20 shows displacements of a solid
cylinder under the uniform tension along the
x-axis. Fig. 21 shows the stress around a
spherical cavity in an infinite elastic medium
under the twisting load. Results are in good
agreement with the exact solutions.

4.4 Plate bending problems'”’
4.4.1 Boundary integral equations

Let Do denotes the domain on which the
lateral load ¢(xr, yr) acts. The boundary in-
tegral equations for deflection w are given
as follows?®

T Te=const
P = T.=0
e i,
el

Axial Disp. : u Radial Disp. : Vi

Fig. 20 Displacements of a solid cylinder under
uniform tension along wv-axis

15 Lgigct
Z}VG@
O
1.0 4
y
ol /e
TR
z
0

90° @
Fig. 21 Stresses around a spherical cavity hole in

an infinite elastic medium under twisting
load
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@@=\, dervnS@eweQ) dwedvs
+ S ) {mn(P)—a%S(P,Q)
—ua(P)S(P, Q)~%Pw(P)M (P, Q)
+w(P) Vn(P,Q)] dse @.21)
where

1
S(.Z'P, Yp, Q) ZS(P,Q) :—8;E—R2 log R

D denotes the flexural rigidity. m» and v is
the bending moment and the equivalent trans-
verse shear force respectively. The kernel
function Mx---etc. are shown in appendix F.

The fundamental solution S(P, Q) is the same
as that of the two dimensional elastostatics.
Therefore, the properties of singularity of the
kernel functions are also the same.

4.4.2 Representation like as source and sink
or doublet distribution in hydrodyna-
mics

Investigate the exterior ploblems, Eq. (4.21)
is complicated and inconvenient because they
are composed of two sets of kernel functions.

Let us try to simplify the equation to be

represented by one set of kernel function.

Now, the deflection in D and D becomes as
follows, respectively

_ S ) [m,,(p)-az—PS(P,Q) —va(P)S(P,0)
__é%;w(P)Mn(P,Q)
+w(P) Vn(P,Q)} ds»
oY np e

Notation is the same as Fig. 2 and it is assumed
that the lateral load is absent. Taking the
regular function @®(P) in the domain D,
the following integral vanishes in D,

_ S ] {mgp ( P)@%;S (P,Q)—vPS(P,Q)

Masatoshi Besszo, Hiroshi KAWABE

+wO(P) Va(P, Q)} dsp

=0 in D (4.23)

Adding Eq. (4.22) to Eq. (4.23) and assuming
the following boundary conditions, we derive
w(P)+w®(P)=0
9 0 o p)—=
onn w(P)+7?——w P)=0

npe

on C

(4.24)

We obtain the representation of deflection as
follows.

w(@)=—| | malP)+ mP(P5—S(P.0)

onp

— {va(P) +v$§>(P)}S(P,Q)} dsr
(4.95)

On the other hand, when the boundary con-
ditions are putted on tractions as follows;

1n(P) -+ 3P (P) =0 }
on C (4.26)
va(P) +0P(P) =0
We obtain
w(0)=| | [FamelP) e @) MP.0)

—{w(P) +w<°>(p)}Vn(P,Q)} dsr

(4.27)

If we take the regular function @™ as the uni-
form bending field, Eq. (4.25) and Eq. (4.27)
are appropriate to use for stress analysis
around a rigid inclusion and a cavity hole
respectively in an infinite plate under uni-
form bending.

4.4.3 Numerical computation for the uniform
lataral loading

The numerical computation of Eq. (4.21) is
the same as in the two dimensional elastosta-
tics. When the lateral load acts the plate,
the integration over the domain D, is needed.
Then we have to do the numerical integra-
tion over the domain D,, such as in the FEM.
No matter what unknowns are on the bound-
ary, the calculations must be done over
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the whole interior domain D, and the ad-
vantage of the BEM is lost.
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where
cos o= 9% sino=22
T on’ T on

However, the lateral load g is usually uni-
form and then the following method is appli-
cable.

Now, the deflection w is governed by the
differential equation as follows,

Arp=-L
“=D
where g is constant over the plate.
This inhomogeneous equation has a general
solution in the following form,®

(4.28)

W=Wo+ W1

where
A%:% (4.29)
Awi=0 (4.30)

where wo is a particular solution for Eq.
(4.28) and w: is the homogeneous solution.

We may find a particular solution w, for
a uniform loading for Eq. (4.29), for example,
as follows,

_q
64D

Wo (x*+y*)? (4.31)
Then, the problem is to obtain the solution
w: which satisfy the boundary condition as a
whole.

For example, in the case of the clamped
plate, the boundary conditions are given as

follows,
w=0

Ow[on=0

on C (4.32)

So, the boundary condition of w becomes as
follows,

W= —Wo= — 6ZD (332+y2)2

Ow: Jw

om 6%0 - 6ZD {cosoc(.z“-}-xyz)
+sinoc(x2y+y3)}

(4.33)

Accordingly, the solution w: can be obtained
from the differential equation (4.30) under the
boundary condition (4.33). The boundary
integral equations are as follows,

=—wi0)+| |5

ZWo(P)Mn(P,Q)

—wo(P) Vn(P,Q)} dsr

where unknowns are ., and vy, on the bound-
ary.
4.4.4 Numerical examples

Fig. 22 shows the stresses around a circular
hole in an infinity extended plate under the
uniform bending. Fig. 23 shows the deflec-
tion and the bending moment of a circular
plate under the uniform lateral load.

Both results in good agreement with the
exact solutions.

20
M%"Io /o""
1.5
1.0
Mo Mo
) A
M
1 A9
) M
o Cal.
——Exact
0 90 5

Fig. 22 Stresses around a circuler hole in an
infinite plate under uniform bending
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Fig. 23 Deflections and bending moments of a
circular plate under uniform lateral load

5. Conclusions

In this report, the general formulation of
the singularity method (so-called the bound-
ary element method) which transform the
fundamental differential equation in the theo-
ry of elasticity into the integral equation is
studied and summarised as follows:

(1) There exists many alternative bound-
ary integral equations to be solved, and we
may select the favorable one to solve the
problem considered.

(2) The usefull one of such integral equa-
tions are derived and represented by one
species of singularity as the unknown like as
source and sinks or doublet in hydrodynamics.

(3) The formulation of the boundary inte-
gral equations for various problems, i.e. the
two dimensional elastostatics, the two dimen-

sional elastodynamics, the three dimensional
elastostatics and the plate bending problems,
are shown,

(4) The singular properties of the kernel
function for each problem are studied especial-
ly with regard to its analytical and numerical
integration.

(5) To verify its usefullness and accuracy,
some numerical examples are shown in each
problem.

References

1) C. A. BresB1A: The Boundary Element Meth-
od for Engineers, Pentech Press, (1978)

2) A.E.H.Love: A Treatise on the Mathematical
Theory of Elasticity 4th ed., Cambridge, 1959

3) Y. C. Fung: Foundation of Solid Mechanics
Prentice-Hall (1965)

4) U. D. KuprapziE: Dynamical Problems in
Elasticity, Progress in Solid Mechanics, Vol. 3,
North-Holland Pub. Comp., Amsterdam, (1963)

5) R. CouranT and D. HiLvert: Methoden der
Mathematishen Physik, Bd. I. s.97-199, Berlin,
Springer (1931)

6) M. ABramowirs and I. StEcun: Handbook of
Mathematical Functions, Dover, (1970)

7) Y. L. Luke: Integrals of Bessel Function, Mc-
Graw-Hill, (1962)

8) J. M. Jaswon and G. T. Symm: Integral Equa-
tion Methods in Potential Theory and Elasticity,
Academic Press, (1977)

9) S. BEreMAN and M. ScHIFFER: Kernel Func-
tion and Elliptic Differential Equation in
Mathematical Physics, Academic Press, (1953)

10) M. BesszHo and H. KawaBe: The singularity
Method in Boundary Value Problems in the
Theory of Elasticity (Part I Theory) J.S.N.A.
Kansai, Vol. 177, pp. 99-106 (1980) (in Japanese)

11) M. Bessuo and H. KawaBe: The Singularity
Method in Boundary Value Problems in the
Theory of Elasticity (Part II Numerical Exam-
ple) J.S.N.A. Kansai, Vol. 178, pp. 121-126
(1980) (in Japanese)

12) H. Kawase and M. Bessuo: The Singularity
Method in Boundary Value Problems in the
Theory of Elasticity (Part III Axisymmetric
Problems) J.S.N.A. Kansai, Vol. 184, pp. 105-
111 (1982) (in Japanese)

13) H. Kawase and M. BrssHo: The Singularity
Method in Boundary Value Problems in the
Theort of Elasticity (Part IV Two Dimensional

NI | -El ectronic Library Service



The Soci ety of Naval

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

Architects of Japan

The Singularity Method in Boundary Value Problems

Elastodynamic Problem) J.S.N.A. Kansai, Vol.
188, pp. 123-132 (1983) (in Japanese)

T. H. Tan: Scattering of Elastic Waves by
Elastically Transparent Obsacles (Integral-
Equation Method), Appl. Sci. Res. Vol. 31, pp.
29-51 (1975)

L. T. WHEELER
Theorems

and E. STERNBERG: Some

in Classical Elastodynamics and
Analysis, Archive for Rational Mechanics and
Analysis, Vol. 31, pp. 51-90 (1968)

Y. Niwa, S. Kosavasur and M. KITAHARA:
Analysis of Eigenfrequency Problem of Thin
Plate by Integral Equation Method, Proc.
J.S.C.E. Vol. 304, pp. 1-16 (1980) (in Japanese)
Y. N1wa, S. KoBavasur and M. KiTAHARA: Ap-
plications of Integral Equation Method to Eigen-
value Problems of Elasticity, Proc. ]J.S.C.E.,
Vol. 285, pp. 17-28 (1979) (in Japanese)

H. NISHITANI: Two-dimensional Problem
Solved Using a Digital Computer, Jounal of
J.S.M.E. Vol. 70, 580, pp. 627-635 (1967) (in
Japanese)

F. J. Rizzo: An Intrgral Equation Approach
to Boundary Value Problems of Classical
Elastostatics, Quarterly of Applied Mathematics,
Vol. 25, No. 1, pp. 83-95, (1967)

H. Nisurrani: Solution of Notch Problems by
Body Force Method, ed. Sih, G. C. Mechanics of
Fracture Vol. 5, Noordhoff (1978)

Y. H. Pao: Dynamical Stress Concentration in
Elastic Plate, Journal of Applied Mechanics,
Vol. 29, No. 2, pp. 299-305, (1962)

C. C. Mow and L. J. MENTE: Dynamic Stresses
and Displacements around Cylindrical Dis-
continuties due to Plane Harmonic Shera Waves,
Journal of Applied Mechanics, Vol. 30, pp. 598~
604, (1963)

Y. Niwa: Application of Integral Equation
Method to the Determination of Three Dimen-
sional Stresses around a Cavity, Proc. J.5.C.E.
Vol. 266, pp. 25-37 (1977) (in Japanese)

I.. Manori, L. T. Caex and O. Suciu: Steady
and Oscillatory Subsonic and Supersonic Aero-
dynamics around Complex Configurations, ATAA
Journal, Vol. 13, No. 3, pp. 368-374 (1975)

W. C. WEBsTER: The Flow about Arbitrary,
Three-Dimensional Smooth Bodies, ]J.S.R. Vol.
19, No. 4, pp. 206-218 (1975)

K. J. Bar and R. W. YeEuNG: Numerical Solu-
tions to Free-Surface Problems, Tenth Naval
Hydrodynamics Symposium, Session VII, pp.
1-25 (1974)

217

Appendix A

Kernel function of two dimensional elasto-
statics

T(P,0)= 0‘; %Ml;” nQH}
T(P,0) =£::1—;7V~10g12-—-1§;r Y cos 20}
T P,Q)= (,;zp :_i:VlogR——lg;v cos 20]
T#(P,0) = ai_?;;a—l;; Y sin 20}
U (P,0)= —H (1o gR+1)—% oszeJ
U2(P,Q)=— +G sin 20
U:(P,Q)=U:*(P,Q)
U2(P,0) = [i’;{” (logR—!-ﬁl)-i——ll—_g;rlicosQﬁJ
Appendix B

Kernel function of two dimensional semi-
infinit elastic space problems

JQ)= S é (ui(P)T3(P,Q)—1:(P)Us(P,Q)] dsp

—0

LPo= 477 Bsp

R
[(?/Q—yp) 1og~]—e,~

Yo—Yr _ (Yo—yr)R? }
2 2R"

E a[x
47rasP(Q

L (xq—xp)R* }

-+

T.(P,0)= ~,) log =

2 2R"

—1[1—y R
UP.Q)= g | 5 @e:) log -

ye)(0+6")

Yo ?/P]
RI

—(Yo—
—(1=v)(x

e—Tp)"

. —171— R
Uz(P,Q)=§;[“—2—V(?JQ—yP) logF

+(xo—x2) (0+0')

5+ :
- 21) yQ+(1+V)(?/Q+’yP)

YolUYr
R’
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0 = tan*iEQ—jr-‘yz Appendix C
To—2p
Kernel function of two dimensional elasto-
dynamics
0Y»r 9 0y ,,,ai (2) »_6_{0_1: 0Y»r (2) 2 }
T:4P,Q)= [(01%) o, (kR)+<8nP> e Hj (KRH—a P T P{H (FR)—H®(KR)}
. o
— (H® _H®
?kz 0sp02p0Y p s .(kR) HP(KR)}
) oyr\? 0 dxp\? 0 oxp 0Yyp 0 .
t ©) Yir © grr 99r ) — H®
To(P,0) = [ > s o(kR)+< oo” ) o HPUR) + 500 S (P (k) — H (IxR)}}
4 (2 1 82 () N & (6)) :I
+2 [H (RR) 4+ o ach{Ho (kR)—H®(KR)}
9 0yr\? 0 0 6yp
2 = o(p Y pgo ® )
T:2(P,0) ) K ) s PHO (ibR)+< 83P> as,,H (KR)+ dsn s, (kR) —HS (KR)}}
_r [H‘”(kR)—f— 1 ®(kR)— S”(KR)}}
2 Sp k
"2 _i f?‘r_l’ 9 <éyf> 4 @ _pr Y- O] (@
T (P’Q)—AL[((?MI,) onp PRR)+ 0 (?nPH (KR) Oy Onp 0sp{H (RR) —HP(KR)}
i 0° (H® (K
+ T I T {HP(RR)—H{(KR)}
Appendix D ‘Evily. A( ) is the Hewman’s ramda func-
0

Integrals S,S*, P‘P* expressed by the com-
plete elliptic integrals
__ kK(k)
2m(rpro)t?
2(rp7e)'/E (k)
TR
=—1——K1~—1~k2>1{(k)—E(k)}
Th(rpre)'/? 2
Lo—Xp)k _ e,
_ —xp)k 1

(%o
e K(k)+

S¥=

Pt=— 7p>7q

7’P:7’Q

7"P<7/Q

K( )and E( ) denotes the complete elliptic
integral of the first and second kind respec-

Appendix E

Kernel function of axi-symmetric elastic
porblem

1 9°S*
UAPO =S~ 315y Gap
1 o5
YD OV = —
Up' (P,Q)'_ 4(1_])) axpai/p
1 oP
U2(P,0)= T:VT{“Q“”P)W?
o)
Vp
| oP
UAPQ)= g1y B )
aS 1 Jdxzp 0S
§P O
TP =3, 1= omy 0aze
19 <025*>
2(1—v) onp\ 0z}
0xr 0S v _Orr 9S
1 _
T(P,Q)= Onp Orp  1—v Onp 0xp

NI | -El ectronic Library Service



The Society of Naval Architects of Japan

The Singularity Method in Boundary Value Problems 219

S <625“ >
2(1—v) Onp\0xr0rp

orp 0P v 0xp opP 1 >
THPQ)= Onp 0xp  1—v Orp (01/P+7pp
1 0 < 0 P* _1_6P*>
2(1’—1}) anp 6xpayp 7’1) axp
opP 1 Ox» 0P
TA(P.Q)= onp l—v Onp 0x»
14 a?"P 1
1—v Onp 1'PP
g2 (22)
2(1—v) onp\ 0x?
Ue(P,Q)=
oP odr P
To(P,Q)= oy Onp 7»
Appendix F
Kernel function of plate bending problem
S(P,Q)= R2 log R
0

1
e S(P,Q)= Méﬁ(QR log R+R) cos (0—ar)

,Aws(p 0)= (2R log R+ R) cos (0—aq)

0nQ

~S(P,Q)=

- cos (ap—ag)

D ——[(2log R+1)

+2 cos (f—ap) cos (B—aq)]

1—Jr—vlogR—Fl

Ma(P,Q)= G C08 2(0—ar)

143y
+ 8
o [1
Va(P,Q)= [27,«9—1—
0 1+v cos (0—aq)
g ———Ma(P,Q)= “hr %
1—v sin2(6—ap)sin (0—og)
4 R

sin 2(0— ocp)}

0 0 [—1 sin(0—ag)
a%Q Vﬂ (P} Q)_ 631) |i 2,” R

1—v cos2(0—ap) sin (0 —aq)
4 R
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