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   Using  thc Maxwell-Betti's reciprocal  tEieorem, the  general formulation transforming  the

fundamental  differential equation  to the  intebcrral equation  in the  theory  of  elasticity  is deduced.

In similar  ways  as  in hydrodiynamics, boundary  integral equations  which  arc  represented  by

either  sDurce  and  sink  or doublct distribution are  derived. The  formulations ef the bounclary

integ.ral equation  for  various  problenis, i.e. the two  dimellsional clastostatics,  the  two  dimen-

sional  elastodynatnics,  the  threc  dimcnsionul elastostatics  and  thc  platc bending  problems  are

shown  and  studicd  cspecially  regarding  the  property  of  their  lcernel [unction  in collcern  with

thcir iiumerical  integration. To  vcrify  its usefullness  and  accuracy,  sotne  numerical  examplcs

are  shown.  The  proposcd  equations  are  especia]ly  usefull  for stress  coneentration  problems
and  dith'action problems  during'  passage oi  elastic  waves  in ±he  infinietl}r extended  elastic

medium.

1. Introduction

  In the recent  years, the singularity  method,

meaning  a  metl)od  of  solving  boundary  value

problems  by  integral equations  in regard  to
the bc}undary singularity  (so-called the Bound-
ary  Element Method; BEM),  has been  widely

appliecl  to the beundary  value  problems  in the
theory of  elasticity,  and  a  number  of  related

reports  and  text beoks have  been  published.t'
  The  idea to solve  the boundary  value  pro-
blem  in the theory  of  elasticity  by  transforma-
tion the fundamental defferential equation

into the integral equation  has already  appearefl

in the early  I900's. Love2> sketches  that tl'bp.
integral approach  has been  exploited  by  Betti
and  Fredholm.

  The  outstanding  feature of  the BEM  is that
it reduces  of a  dimension of  preblem, The
si･'stem  of equations  resulted  from discretiza-
tion of  the boundary integral equation  becomes
smaller  than  the system  in the finite element

*
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method  (FEM), in which  the  domain  of  the

problem under  consideration  is in discretized
into a  number  of elements.  The  FEM  may  be
not  appropriate  to treat the problems of  an

infinite domain because ilts dimensions be-

comes  very  large and  also it is diracult to
defines boundary  conditiorL  for infinity, The
BEM  has no  sucli  dithcult'ies in solsring  these

problems  since  the discretization i$ needed

only  aleng  the boundary of  the body not  as

like in its whole  domain as  the FEM.
  However  this method  1ias not  been tried

positively until very  close day.s. The  reason

may  lie upon  the  facts that  the kernel functions
of  the  boundary  integral equation  are  com-

plex and  have strollg  singuLarities.

  In this report,  we  develope the BEM  for
various  problems in the'1/heory of  elast.icity

and  show  its usefuilness.  It is most  important
in applying  the BEM  that the boundary
should  be discretized in suencient  number  oi

segments  and  the singularities  of  kernel func-
tions shold  be properly integrated,

  In chapter  2 and  3, we  show  the general
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formulation by transforming the fundamental
differential equation  in the theory of  elasttcity

inte the integral equation  and  show  the related

important theorems. Wc  propese the simpli-

fiecl bounclary integral equation  ef  displace-
ment  field making  use  of simple  singularities

similar  to source  and  sink  or  doublet in hy-
drodynamics. In thc following, we  show  con-

crete  formulations of the BEM  for various

problems, i.e. the two  dimensional elastosta-

tics, tiie two  dimensional elastc)dynamics,  the

three dimensional elastostatics  and  the plate
bending  problems and  investigate the nu-

merical  preperty oi  the  kernel functions. AIso

we  make  some  remarks  on  tlie numerical  com-

putatlon.

2. Fundamental  Equations in the Theery  of

   Elasticity

  Before formulating the boundary equations,

we  summarise  the field equatiens,3)

  Let D  be a  domain which  may  be interior
or  exterier  on  the  boundary  C, as  shown  in
Fig. 1. Under  the basic assumptions  of  srnall

displacement, homogeneous and  isotropic
linear elastic  material,  the equation  of  motion,

HoQlc's law  and  the strain-displacement  rela-

tion are  expressed  as  follows;

   pOo2//-v..t/.ll,.lc'xtil'+x, (2.o
            3

tttj ==  A 8w  III] eicte +  2G e'ij
       k..-1

e,,--l--(g:'e,,+g-Z-,')'

X2U2

b--

             Xl

             Ul

X3ul.

 Fis., 1 Coordjnate  systerns

c

(2.2)

(2.3)

  i=l,2,3 and  1' 
-T

 1,2,3

wh ¢ re  ab.i, 5tj, ePtJ' and  hij are the displacements,
stresses,  strains  and  body  forces which  are

iunction of position in space  and  time, p,
A and  G  is densiti,r, Lame's  constant  and  shear

modulus  and  8ij is Kronecker's delta.

  We  use  the expression  either  x),, x2, xa, ･･･

or  w,  y, £
',･･･,

 according  to the circumstances,

but there  will  be no  confusion.  
'

  Substituting Eq. (2.2) and  Eq. (2.3) into

Eq. (2,1), we  obtain  the Navier-Cauchy equa-
tiOll,

   pSJI"-E-e- ==  Gzi ti ,+(  t+e  tO-Il' lt l.- (2 .4)

where

      7==t".,gzl
          02 OL, 0L,
      A=  --+-
                   +
                     Ox,2         Oxi2               OX,Z

A is the Laplacian, assuming  that  the  bodiy

iorces dose not  exist.

  If the displacement field is in time harmo-
nics  with  circular  frequency, we  usually  use

abbreviation  such  as;

   Zis(Xt,x2,ar3,t)=Re[ut(xi,x2,;ce)e'ewt]  (2.5)

where  ui(xi,x2,xa)  are  complex  vaiables

which  is independent oE  time. Re[ ]denotes
the real  part of  the cumplex  expression,  and

i--J-i'r'. -

  Substituting Eq.  (2.5) into Eq, (2.4), we

wtll  ,have the governing equation  for complex
displacements,

               07

   (A+k2)ui+ 
czb-ri}-//-

 
==O

 (2,6)

where

    o
 ptu2

   
k-

 
='C-

   a=  
A-iG

 -=  thi--1

   K2=  Pbl2."
       A+2G

k and  K  are  the  wave

(SV wave)  and  longitudnumbers inal (P

(2.7)

of  transverse

wave)  waves
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respectively.

  In the special  case  of w=O  in Eq.  <2.6) re-

prescnts the basic equilibrium  equation  in

terms o{  displacements in the elastostatics,

We  note  that ui(xi,  x2, xu) ¢ an  be considered
as  a  real  function in the elastostatics.

  Now, the problem is to solve  the fundament-
al differential equation  (2.6) or  Eq. (2.8)
under  the given beundary conditions.

  When  the displacements are  known, the
stersses  ean  be obtained  by  iollowing differ-

entlation.

   crtj-A&jt/.ll,gk':--+G(-g-S'i,+g".l.)  (2.g)

Surface tractions are  expressed  as

         
3
 071

                                (2.le)     ri =:  E] aij
        P',-i OXj

where  n  is the  outward  normal  vector  on  the

boundary, as  shown  in Fig, 1.

3. Reciprocal Theerem and  Boundary  Integral

   Equation

8.l Reci.Procaltheorem

  Let us  consider  the tuTo elastodynamic

states.  Thev  have and  the same  medium  and

vary  sinsiod"ally  in time with  the same  circular

frequency. These  two  states  are  distinguished

by  the superscripts  (l) and  (2) respectively,

Then  iollowing functional is introduced,

   i(uCi), u(!)) =!.[U.-U.]l  dv (3,1)

where

        
S
 GkE

   
V'fi=,Z.=,

 2 
USi)ttS2)

        
3nl

   
UD

 
=

 i=, 
,l
 =, tt-eSi? 

o'Fii)

If u(i) are  equal  to u('),
kinematic energy  stored

for the complex  elastic

and  their difference is to
they  are  not  the time
i  is not  accurate

modefied  Lagrangian
tliat there  exists  the

(3.2)

    then UK  stands  for the
      in D  and  UD  stands

      deformation energy

       be Lagrangean but

   averaged  value,  So  that

Lagrangean, "'e cal]  it the
    function. It is clear

    reciprecal  relation  in
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Eq, (3.1), that is,

   i<tv(D, ttC2)) ==l(u(2),  u(i)) (3.S)
Integrating Eq. (3.1) by  parts, we  have

 i(ti(i), ue))  ==  
-l
 I u t/.ll, uso7s2) ds

           +  
G2k2

 !. t/.ll, [tesL'us2' + 2, wso
            ･ IAus2)+aeo7,':'l'l]aw
  If uCi] and  za(2) are  regular  in D  and  satisfies

the  fundamental differenti.al equation  (2.1),
then  we  have

   i{.o,u(?))-:eS,tF.,bly)Ts!)as
and  Eq. (3,3) can  be written  in the fo]lowing
iorm  as  the reciprocity  between  the boundary

displacements and  tractions.

   S.,S,US'i'7S'"'ds=S.tg.,tvS'DTSi'ds (3,4)

This formula is well  knQwn  as  Maxwell-Betti's

reciprocal  theorem.i4),i5)

3.2 Bounaa7zv i･ntegral egvtations  and  bottnda]t),
    condftdons

  Let us  introduce the iundan]ental solutions

which  satisfies  the Navier-Cauchy equation

(2,6) and  has an  appropriate  singularity;

      UT- (P, 9)
where

      P  I!l (Xpl, Xp2,  XPs)

      e i  <xQi, xe2, xQ3)

UT- (P, e) means  the infiuence iunetion which

represents  the displaccmerLt at  the point 9
in the xm  direction when  the concentrated

forcc of  unit  magnitude  acts  at  the point P
in the xm  direction when  the  concentrated

force of  unit  magnitude  at]ts  at  the point P

in the xj  direction, Then  we  can  obtain  the
iunction T?(P, e) substituting  U,nt･(P, e) into
Eq. (2,8) and  Eq. (2.9), T}(P, e) means  the
influence function which  represents  the dis-

placement  at  the point 9 iln the xm  direction
when  the displacement of  unit  magnitude  acts
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at  tl]e point P  in the xj  direction.

  Let us  now  apply  the reciprocal  theorern,
Eq. (3.4), in a  domain  IJ), bounded  by  the

suriace  C and  a  small  circle  around  the point
9, taking two  states  as  iollows:

      {uSi), TSi )} ==  {uj, Tj}

      {ttSY), Tl,2)}=  {U]e(P, e), T]t<.P, e)} .

Then  we  obtain  the following represcntation

of  displaeements' ;

    um(e)  ==  !, t/.ll, [ujCP)7"l'L(P, e>

                
-rj(P)

 U'g`{P, e)] dsp C3.5)
  m=l,  2, 3

  This equation  permits us  to solve  the bound-
ary  value  problem in the theory  Qi  elasticity

by integral eguation,

  Eq. (3.5) is the basic equation  of  BE"'I.
The  following boundary  value  problems are

classMed  in the  first place: the  interior pro-
blems and  tbe exterior  problerns where  the
boundary C consist  oi several  boundaries.

  In the  interior problems, we  may  apply

Eq, (8.5). For  the steady-state  e]astodyria-

rriics,  Nixva et, al.iG),i')  applied  the boundary
equation  (3.5) to ei.crenfrequency  analysis.

Eigenvalues can  be obtainecl  as  a  parameter
for which  a  non-trivual  solution  of  homoge-
neous  boundary integral equation  exists,

  In the exterior  problems, there is some  differ-
ence  in the selution  due  te the property of

material  between domain D  and  D, which

means  cornplementary  domain  of  D. In this

case,  the displacements must  be continuous  and

the tractions must  be in equilibriunx  en  the
boundarv C.

  i) As"suming the  rigid  boundaries, we  ob-

     tain the tractiens T(srk)(P) when  the ex-

     ternal forces act  on  the boundary.

  ii) Forcing the boundary C to de'form itself

     by the displacements uj(P),  we  define

     the traction TS･`")(P)  on  the interior

     domain  D  and  TtP"t)<P)  on  the exterior

     domain D, respectively

Then  the  equiriburium  conditlon  on  C  is as

follow.

Hiroshi KAwABE

   7Si")(P)+7E""`)(I')+rS`i)(P)==O  onC  C3.6)

Differentiating and  transforming the Eq. (3.5)
to the representation  of  boundary tractions,
we  can  determine the boundary  displacements,

3.3 RaPresentation lb, a  singulariby  similar  to

    sottrce  ancl  sink  or  cioblblet in h),drodynamics
  "ihen we  investigate the exterior  problem
using  prcvious boundary integral eguation,

it will  be complex  and  inconvcnient because

two  lcernel functions U;i"(P,e) and  T)'`(P,9)
are  nessesary  to treat lt.

  Let us  try to simpliiy  these equations,
Let  us  eonsider  the  configuratioii  shown  in

Fi'g, 2. Let D  be a  exterior  domain  and  let D

be the eomplementary  domain of  D, Normal

vector  n  has tlie same  direction as  defined in

Fig. 1.

  Clian,cr,ing the si'gn of  Eq. (3.5), the  displace-
inents  at  point e are  represented  respectively

in D  ancl  D  as  follows;

 
-
 S . ,$,  [ ttJ CP) T}" (P, 9) -rj  (P) U,m (p, g)1 as.

              =  tten(e) in D)

              =0  in lr)J (3･7)

Assuming that the material  of  domain  D  is
same  as  of  domain  D  and  function u}")(P)  is

regular  in D, the integration around  the point

x!

oX2
(a) Xl

     o
             {b) Xi

Fig, 2 Exterior domain  and  Interior dornain
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e vanishes  by  the  Green's theorem.  If the

point e exists  in the domain  D, we  liave the

following formula,

 -  S .  t/.ll, [uS"' CP)T}'L(P, e) -  T;O' (p) ur  (p, e)] dsp

             l' 
Or
 .gs)(e> l: 2' l (3 s)

Addin.cr Eq. (3.7) to Eq, (3,8) and  assuming

the total tractions vanishes  on  the boundary

C, then

   Tj(p)+Ts･o)(p)=o  onc  (s,g)
We  have

   u.(e)==-<  S]{ttj<p)+uso)cp)}
           JOi--l

               
･T,m.

 (p.e) clsp  (3,10)
On  the other  hand, assuming  the total dis-

placement, instead oi  tractions, vani$hes  on

the boundary  C,

   zaj(P)+wSO'(P)=O  onC  (S.11)
We  have

   tt.,(e) ==  [ >k{Tj(p)+Tso)(p)}uy(p.e) as.
          JCj=1

                                C3.12>
On  the analogy  et  the hydrodynamics,  we  may

call  Eq.  (3.IO) and  Eq. (3.12) the Tepresenta-

tion of  source  and  sink  or  doublet distribu-
tioll.4),s),g)

  In the elastodynamics,  we  may  concider  the

plane harmonic waves  as  the regular  iunctien
uSU'(P)  and  TSO'(P)  in D. Then, the boundary

condition  shown  by Eq. (3,9) is equal  to the
ene  oi  a  cavity  hole, Further.more, if we  add

teS"'(P) to both  sides  of Eq. C3.10), we  obtain

the Fredholm's  equation  of  the second  l{ind

whose  unknouxxrns  are  the total displacements
u,･(P)+tvl･"'(P>  on  C,

  On  the contrary,  the boundary  condition

shown  by  Eq.  (3.10) is equal  to the one  of  a

rigid  inclusions and  if we  add  uS-O)(P) to both
sides  of  Eq. (3,12), we  obtain  the Fredholm's
equatien  of the first kind whose  unknowns  are

the total tractions T,(J') -l･-T;･")(P> on  C,

  In the elastestatics,  we  censider  the uni-

form stress  fields as  the  regular  functions
ttS-O}CP)  and  TS"'(P)  in D, Then  

'we
 can  investi-

gate tlie stress  concentration  prc)bleni arc]und

a  cavity  or  areund  a  rigid  inclusioii using  Eq.

(3,10> or  Eq,  (3.12).
3.4 NttmericalProaedttre

  Numerical  precedure to solve  boundary
value  problems by  making  use  of, for example,
Eq. (3.5> is as  follows. At firsri] the boundary

may  be divided into N  elements.  (If the pro-
blem  is three  dimentional, the boundary e]e-

ments  are  parts of  the  external  surface  of  the

body. If the problem  is two dimensions, they
are  ]ine elements.)  Assuming the unknown

quantities are  constant  ior eac/h  element  and

giving the boundary condition  at  the midclle

point of each  element,  we  can  solve  them as

simultaneous  equations,

  Recently, a trend toward  tlLe higher order

element  whicli  means  tliat the unknown

quantities are  not  constant  for each  element

has appeared.  Howevere,  if the  integration of

the kernel 'Eunctions
 over  eac/h  element  are

done  exactly,  we  might obtain  aecurate  cnough

solotion  by  using  constant  elem,ents.

  Generally speaking,  the accuracy  of  the

BEM  analysis  depend on  the number  of  ele-

ments  and  on  the accuracy  of  numerical

integration, especially,  of  singvlar  kernel, We
can  not  obtain  the exact  value  of  calculations

near  the  boundary  if higher s'i･ngular integral

are  not  carried  out  carefully.

  In this report,  we  also  studsr  the numerical

property  of  kernel functions for various  pro-
blems  and  improve  the accuracy  of  its integra-
tion.

4. Formulation  fbr Various Problems and

   Numerical  Examples

4.1 Two  dimensional elastostaSics'O'

4.!,1 Representation o'E Airy's stress  fun ¢ tion

  In tlie two  dimensional elasi.'ostatics,  Airy's

stress  functien can  be applied.  Letfbc  AiTy's
stress  functien, The fundamental differential
equation  to be satisfied  is as  fo,[lows,

    A2f=O  (4,1)
The  fundamental  solution  of  Eq. (4.!) may
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be taken  as  iollows;

               E

    f= S<P, e) ==  siR2  logR                                 (4,2)

where

    R=Pq==[(xQ-xp)2+(ye-y.)2]i/z

    E:  Young's  modulus

  Relations between the stress  function and

the displacements and  the tractions are  derived
as  iollows,

                 02

   h  
==

 
Ti

 (P･ 9) ==  
'bgJoy.

 S(P･9>

                  OE

   T,=T,(p,e)=-o,.o..s(p,e>

                       10
   u,

 
==

 
u,

 (p,e>==. (p,q) -  2-c- 
-ff.-.

 s(p･e)

                       10

   
u2=U2(P,9)=ff(P･e)-2G

 oy.S(P)Q)

    o o

   
-o-th-.-

 E(P,e) =  fiy. 
ff(P,e) 

--
 
-SA

 ps  (p,e)

                                 (4.3)
where  OIOsp denotes the differentiation tangen-
tial to boundary  at  the point P.
We  take the two  states  in Eq, (8,4) as:

{UiCP,e),1'j(P,e)}=::{uS2),7S2)}andf=={uSi),TS.T)},
we  obtain  as  follews

   f(e) =  ! . t?. 
,
 [uj(J'}Tj (I', e)

             
-oCP)  Uj(P, e)] ds. (4.4)

  Although  U,(P, e) and  T,･(P,9) are  the dis-

placements and  the  tractions  by  the  singularity

S(P,q) respectively  from above  equation.

They  are  also  stress  functions at  the point e
when  the unit  ma.crnitude  of  tractiens  and

displacements act  on  the point P  respectively,

  Wc  can  easilly  introduce tlre representation
of  displaerments from Eq. (4,4) as  same  as

Eq, (3.5) (See appendix  A).

  The representation  like as  source  and  sink

or  doublet distribution are  as  follows,

   f((?) =  !. ,t9., {7j (P) +TSO)(p)}u,  (p, g) d,.

                                 (4,5)

Hireshi KAwAiE

where

      uj(P)+ztS")(P)  =e  on  C

and

   f(e) =:  
-
 S .  ,tF., {uj(P) +  ttSO)(p) }T,(p, e) d,.

                                 (4,6)
where

      Tj(p)+TSO]<]))=o  onc

Differentiating Eq. (4.5) which  is used  in ob-

taining stresses,  Nishitani's equationi8)  can  be

derived.

  Lastly, integrating Eg, (4.6) by  parts, we

have

   f(e>=i.[escp) og. 
s(p,e)

         -8(P)
 o?.S(P,9)] 

asp (4,7)

where

           o

        Es=bg'(us+TtEO))

        8,. 
O

             (un+uAO))
           Ds

un  and  us  indicate the norinal  and  tangential

components  of  displacements on  the boundary

respectively.  It allows  us  to directly calculate
the stress  concentration  around  thc  cavity

holc by  solving  the Eq. (4,7),
4.1,2 Property of the singularity  of the kernel
     function
a) Kernel functions of  displacements

  As shown  in appendix  A, the kernel func-
tions are  very  complex  and  the integration
rnust  be done carefully.  To  investigate the

property of  singularity  of  the kernel functiens,
we  wil]  study  the integration over  the arbitrary
element  PnPn.].i on  the  boundary  as  shown  in
Fig, 3. ･  '

  At  first, all kernel functions, T;"(P, e>, are

tangential  deyivative of some  functions so

that  the  integration can  be done easily.  ]r,or
mstance       J

   i f.1"i Tii(p,o  as.

       =]  I;]l"' o?. [ 2i" e+  ls+"V sin  2e] ds.

NII-Electronic  



The Society of Naval Architects of Japan

NII-Electronic Library Service

The  Society  ofNavalArchitects  of  Japan

The  Singularity Method  in Boundary  Value  Problems 205

         1
      

=

 2n (en+i-en)

          1+v

        +  srr (sin2en+t-sin20n)

The  integration of Tii(P, e) is shown  in Fig.

4 for the example.  The  range  oHntegration  is

taken between the point Pn  (-1.0,O,O) and  the

point Pn+t (1.0,O,O) on  the x-axis. The  ob-

servation  point e(O,y) is moved  
'from

 the

origin  to a  arbitrary  point of y-axis. As
shown  in the figure, the horizontal axis  denotes
the  distance of  the  observation  point e irom

the origin.  The  vertical  axis  denotes the

integrated values,  Taking  the limit from the

interior domain to the boundary, the integra-

tion of  the first term  of  TLi(.P, e), en+i-0n,
reaches  7.  From  this result,  it is obvious  that
the behaviour of  is the mist  dominant  factor

in the kernel iunctions Tii(P, O, For the

another  kernel function U}F(P,e), by  trans-

forming  the variable  suitablly,  the integration

can  be done  analytically,  For example,  the
integration of  log R  will  be as  follows:

   i;n+ilogRasp
   

'n

       =  !:IZ'i iog 
//cos

 it !a.>'l cos/<ed'e='ct.)

where

      h=  
-R

 cos  (e-ctn)
      se:=htan  (0-an)
therefore

   S;:'ilogRdsp
       

=h[tant[iog(6Isht)-il+t]:ili.-

.

a"

       ==-Rn+isin(en+i-ct･n)OogRn+i-1)

        +Rn  sin  (0n-an) (log Rn  
r

 !)

        +h(0n+i'0n)

Taking the range  of  integration same  as  in

the case  of  Tii(P, e), we  show  the integration
ef  Uii(P, 9) in Fig. 5. In this case,  the most

dominant singurality  of  kernel function Uii

(P, 9) is the term  of  log R,

Fig,  3

.5 ･''

Q

ILoeal
 coordinate  systems  fer calculation  of

]{ernel 'functions

1''''.'

m-1inns

fiS,"-ttrs,ecig,
  m
       "4t1

       s        T(PQ)ds,,
       ny 

1

        .t.
L!t'gs-･ P.,

y

QCO, IU)

    }q.

oFig.

 4

.5

o

 1234

Integration  ei  kernel

xt

5-6

iunction7

   YQT,i(R,e)

 =51],ig.

 5

 !)q6't(pQ)ds,            /
-

  L /･-
L

(....--"t"K.1.ttli't6gRds
'''.t

 12y3
-

  45

QCO,be6)

6

       e

Integration ofP..,

 Ykernelfunction

7YQ

U,i(R,Q)

b) Kernel functions of  stresses

  After displacements and  tractions

tained, stresses  can  be ca.lculated

following formulas,

arebyeb-the
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           02

   
a=<e>

 
-

 oyl,･ f<e)

        =  I, t9., [ttJ(p) o/2,, 
Tj(p, e)

                 02
          

-7j(P>
                    UjCP,e)ds.                                   C4,8)                0y ,2

           02

   
ay<e)=

 o.,2 f(e)

              0z

   
7xv(e)=-'no"th'e-oy,f(e)

In this case,  assuming  the displacements and

the  tractions  are  constant  on  the boundary
elements,  it will  be difficult to obtain  the

exact  values  
'for

 the stresses  un  the boubdary.

One of  the reasons  is that the dominant

part of the singularity  of thc kernel function
02XeyQ2･T,i(l',q) etc,  is the or[ler  of  11RZ and

it is diMcult to evaluate  it numerically.

Therefore, to obtain  the exact  solution,  we

have  to assume  that the displacements are

variecl  as  linear or  higher order  over  each

elements  er  tD take any  other  similar  means,

  Here, we  propose another  convenient  meth-

od  which  pennits us  to obtain  accurate  stresses

on  the boundary  and  in the interior domain

by  constant  elements,  It is a  method  to

integrate Eq. (4,8) by  parts, namely

   crm (e) =  -  j . ['oO,. " CP) 'e 
z,
 9. }i)' 

,'"-'
 Ti (P' (?)

                     n3            a

          
-
 os.V(P) ox.oe,2 

T2(P･Q>

                 oz

          +7, (P)-b-[ j 
U,

 (P,e)

          
'[-r2(P)

 oOy"','i U2 CP･ Q)] dSp (4'･9)

T]i,en, the order  of  tl]e singularity  of  the krrnel
functions is reduced  to 11R. Integration of

this t}rpe can  be done  analytically  in the  same

manner  as  in the previous section.  VLie can
ebtain  exact  stresses  on  the boundary by
Eq, (4,9) and  OuJ･,JOsp･(1') in Eg, (4,9> by  nu-

merical  differentiation.

I-Iiroshi K,xwABE

4,1,3 
'ISwo

 diinensional senii-infinite  elastic

      space  problems'>
  The one  oE the merits  of the BEA･1 analysis

is that the problems  can  be investigated by

distributing tlie singularities  on  the Ilnite

boundary onl},, Hence,  when  the boundary

has an  infinite part, this merit  may  be lost,
In the  case  oi  infinite the straight  boundary

which  may  occure  frequently in practice, if

we  choose  the  fundamental solution  to satisfy

the boundarv cendition  en  the interface
identica]ly, w"e may  not  need  to put elements

on  the  surface.

  For  such  fundamental  selution  of  the stress

function to satisfy  the boundary  conditio'vi  on

the interface we  have tl)e followings :

   S(P,q> ==  [ll.''R2 1og(tt,') (4,IO)

     R==tt,=r<xQ-xp)2+(yQ-yp)z}fE-

     R' =[(xe-x,p>2+(ye+y.)211'i12

where  the interface  is placed along  the x  axis.

The  sin.crularity  of tl}is kernel is the  same  as

the one  o'f Eq, <4.2) ancl  the various  representa-

tion is the same  as  in that  case.  (Kernel func-

tions are  in appendix  B,) Although  the

solution  of the  semi-finite  elastic  space  pro-
blem  has been obtained  by  Nishitanii"', the

kernel functiens are  very  complicated.

4.1.4 Numericalexamples

  Fig. 6 shows  thc stresses  around  a  circular

hole in an  infinite elastic  plate under  the

uniform  Ioading, The  accuracy  oi  the com-

putation of the strcss  concentration  faetor of

of  an  elliptic  hole for various  aspect  ratio

with  the number  of  division N  (the part of  a

quadranO  is plotted in Fig. 7. The relation

between  thc  accuracy  of  computation  and  the

number  of  division is linear on  a  log scale.

T.herefore, the error  of  computation  decreases
reciprocally  as  the number  of  division in-
creases.

  It"ig, 8 shows  the stress  concentration  factors
o'f a  semi-elliptic  notch  in a  semi-infinite

elastic  plate under  the uni £orm  loading, The
marl<s  in the figure are  results  of  Nishitani's
caliculation2").  Both  rcsults  are  in good
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Fig. 6
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Nuinerical and  experinie]ital  results  ob-

tained  form  I-sl]ape  bcam  undcr  uniiorm

bending

agreement.

  Finally, Fig. 9 shows  the numerical

experimental  results  obtained  from

beam  under  the uniferm  bending.

and  the
I-shape

The  as-

sumption  of  calculation  is that the beam  is

consideredi as the solid structure  constructed

by  the plate members  and  the displacemens of
the contact  lines between the: web  and  flanges
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are  dependent on  the compenents  of  the

displacements along  the contact  line and  in-
dependent  of  the compenents  of  the one

vertical  to that line. Calculatiens are  in goocl
agreement  with  experimental  results.

4.2 Two  dimenst'onal egastodynamic  Preblems'S)
4,2.1 Fundamental solutions

  Let  us  introduce the fundamental solutiens
satisfying  the Navier-Cauchy's  equation  of two

dimensional elastodvnamics  and  the radiation                J

condition  as  
'follows,

   u]n(p,e) =:: zti;-[HS2'(hR)SJm+ 22 a.RO,o2...,
.{llS2)(kR)-H:2)(KR)}] (4.11)

where  HS2) is the zero-th  order  Hanl<el function
of  the second  kind.

  Substituting Eq. (4.11) into Eq, (2,9) and

Eq. (2.IO), we  may  obtain  the kernel functions
T:,(P, e) <See appendix  C).

  To  ivcstigate the property of the  kernel

functions Ul"L(P,q) and  TT･(P,e), we  begin
with  the property ot the Hankel  function. In
the vicinity  of  tl'}e origin,  it behave  like as

shown  in referencc  15),

   ll:!'(hR) m.?, .2,
 logR

   HS2'(feR)-HS2'(KR) ptl?:.i i 
14+.V

 k2R2log R

                  KR<1

  Substituting these  approximations  into Eq.

(4.ll), we  obtain,

   U?(P,Q) m.-., 2;G 
logRtSJm

          KR<l

           
-
 ii6+.(V; o,,}llle!.}l. (R2 iog R)

  This becomes the same  kernel function with

elastostatics.  In the same  way  as  mentioned

above,  it is obvious  that the property of

kernel tunctions T: (P, e) for small  arguments

are  the same  with  that of  elastostatics.

  Applying tliese properties to the integration

of  the kernel functions, we  propose an  accurate

integration method  as  follows. Namely,  let

us  separate  the singularity  term  irom the kernel

fuiietion of  the  elastodynamics  as  follows.

   Ui,L(P,<?)=[Ul"(P,e)HU7''(P,Q)cstatic)1

            +Uyb(P,e)(,,.,,.) (4.12>
where  U?"(P, e)c,L.ii,) denotes the kernel func-
tions of  the elastostatics.

  Then, the integratien of  the  first term  of

the right  hand  side  oi Eq. (4.12) can  be done

easily  by  the  simple  numerical  integration

sucl)  as  trapezoidal rule,  because those of

singularities  are  eliminated  and  then the

integration o'f tbe last term  of  the right  side

of Eq. (4･.I2) can  be done analytieally  by  the

same  way  as  in the elastostatic  case.  For a

simple  example,  we  show  the integration of

the imaginary part of  "S2)(KR). In the same

mammer  as  in the representation  of  Eq. (4.12),

   Yo(J<R) =r  [Yo(KR) 
--;-

 log R] +  ; log R
where  Yo( ) denotes the zero-th  order  Bessel

function of  the  second  kind.

  Fig. IO shows  the  accuracy  of  i'ntegration  of

this inethod.

4.2.2 Numerical examples
a) Rigid circular  inclusion

  VLre try to calculate  the stresses  around  a

I

1

o

-'1

-2

d[e

Fig, 10 Integration of  

'Bessel
 functien YC.KR)
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                (b)

Fibcr. 11 Stresses around  a  rigid  circular  jnclusion

      of  radius  a  subject  to the incident planc
      harmonic  P  and  SV  wave

rigid  circular  inclusion of  radius  a  subject  to
the incident plane harmonic  P and  SV  wave.

Fig. 11 shows  the principal s'tresses  due to the
incident P  and  SV  wave,  Curved lines are

analytical  solutiens22],  

'Fig.
 12 shows  the rela-

tion between the accuracy  of the computation
of  the stress  concentration  tiactors (at e=OO)
and  the number  of  division N  <divide overall

length) for various  wave  nuinbers.  Although

there are  some  deviations in the accuracy

under  eertain  circumstances.  The  calculation

errors  are  under  1 per cent  wlien  the number

of  division is more  than  40 jn the case  of  the
short  wave  length of Ka=!,O,

b) Circularcavity

 Fig. IS shows  the principal stresses  around

a  circular  cavity  of  radius  a  due to the incident

P and  SV  wave.

 Fig. 14 shows  the principal stresses  versus

the wave  number  of  the incident P  and  SV

waves.  The results  are  a]so  i'n good agreement

with  the analvtical  solutions2i},22).          "

4.3 Three dimensional elastostatic  Ploblems`)
4.3.1 Fttndamental  solutions

  The  fundamental solutions  of  Naxrier-
Cauchy's equation  are  as  follows,
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Substituting Eq, (4,13) into Eq, (2.9)
(2,10), the lcernel functions TIF(P,9)

T:L(P,e>= rt.m [6Jm o9,. ('k' ll)

+-o,-sf 
mm
 exOp, (k)'

    v oxp,, a
 +
   1-v  Onp  axp.((-k)02R

(4.13)

and  Eq,
becomes,

Fi.c. !3

(b)
Stressus  areuud  a  circnlar

radius  a  subject  to the

harmonic  P  and  SV  wavc

cavitv  ho]e  of   'jncidenJL'
 plane

l2(1-v>.
 

o
 (0neh,,OxpjOXA.)]<4,14)
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 16Cylindirical  coordinate  systetns

  The  singular  properties of  the kernel func-
tions  are  similar  as  in the two  dimensiona}

elastostatics  and  1/R and  0(ltR)/Onp is thc

main  parts of  the singularity  oi  the kernel

functien Ur･ <P, e) and  1']L(1', e) respectively.
  Niwa  et  al.23), ManoriZ4', XVebster2i) and  Bai

et  al.2e) investigated the  integration ef  the

kernel function analytieally.  For  example,

we  may  show  the integration o'E 0(11Ie)/0np

over  the arbitrary  element,

   Ss. o?tp(Ik)asp

       ==Is.t"-,eeS'  
'oxO.-,

 (l})dsp
               ..-1 -t

       =:  I s,, COS  k-' 
R)'

 dSp =  ! s. a9
where  d2  denotes the solid  ang}e  which  the

area  ds is seen  from the point ?, as  shown  in
Fig. 15.

  If e lies on  the boundary  Sn  considered,  tlie

solid  angle  becomes to 2n. In similar  way,

integration of  11R alld  its derivatives can  be

done analytically,

4.3,2 Axi-symmetric elastic  problems

  Let  us  consider  the stress  .analysis problems
for an  axi-symmetric  body  around  the x-

axis  subject  to axi-symmetric  loads or  dis-

placements.
  The  axixq.ymmetric  elasticity  problems ean

be divided into two  parts of  problems. The

one  is the expansion  and  contraction  problem
and  the  other  is the torsion problern,
  We  introduce the cylindrical  coQ(linate  sys-

tems, as  sbewn  in Fibcr. 16.

    Xl=X

    ev2==rcose

    x3==rsine

    P==(x?,rp,0p), e==(xc!,re,ee)
Because  of  the symmetry  of the
displacements and  tractio/ns are

quantities on  a  circumference  of

a) Expansionand

  Let the  displacements and  

'

consideration  be as  shown  in Fig, 16.

   ut==tv(x,r) , Tt=:7=i(x,r)

   "2=vrCx,r)cose,  72=:7r(x,r)cose

   us=vr(ar,r)  sine  , Tu=7r(x,r)  sinO

(4,14)

                          problcms, the
                               constant

                              radius  r.

And  they  become the  iunction of  x  and  r only.

                contraction  problem$
                         tractions under

Substituting Eq.  (4.I5) into Eq. (3,5),
tain the boundary  integral equation

known  tv, vr, rm,  Tr,

   UCe)==!.[u(P)Tsi(P,9)+vr(P)Tri(P,e)
           

-7.(p)u.r(p,e)

           -T.(P)  U.'(P.e)] rp  cgsp

   Wr(Q>=I,[U(P)Tx2(P,9)+vr(P)Tr:(P,9)

           -7x(P)Ux2(P,ei)

           
-7r(P)Ur2(P,e):/rpas.p

                                (4.I6)
where

   u.i (p,e) =:  S2," u,i cp,g) aep l

C4.15)we
 ob-of

 un-
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   ur ep,e) = S 
2,"

 [ uzi (p,o cos  op

            +  U,i(P,9) sin  e.] as?

etc,b)

 Torsionproblems

  The  relutions  between  {ttj, TJ'}

are  as  follows,

   Ui  =O  , Tt ==-O

   u2=-ve(x,7')sine,

   Zts=Zie(I:,r)COSO  
,

Substituting Eq,  (4zl8) into Eq, (3
tain

         -

   vg(9)  
-m
 ts 

c

where

   u, (p,g) =  Ii" [･ -  u,3(p,g) sin  o.

   T, (P, 9) =  iirc i- 1',3 CP,e) sin e.

               +T,s(p,e) cos  e..,

The  integration of the  kernel

composed  of  following integra!s;

   S ==  t. I2," 
d
£

"

     ==ilre-ix,

   s*=  4i. ii"Rde.
     =  

r2P
 !iO e 

-
 [=Q-xp[t.1,(trp)J,CtrQ)

     +22I'9.i,D'e-1=QLxplt.lo(tre)1i(tre)         v

         xq-xp
       +  

-----
           2

   p=  t. !i,rt 
-C-gkeP

 ̀ iop  =-7  ::s- 
-,i,

Masal/o$hi BEssHo,

(4.17)

                 and  {ve,T,}

         72=  
-Tne

 CX, r)  Sill  0

         7'3 ==  Te(ar,  r)  cos  e

                     C4.18)

                  .5), we  ob-

llve(P)Te(P,e)-TeUa(P,e)lrpclsp

                     <4.l9)

+  U3'<P,e) cos  0p] `lOp

             
'l
 ae. )

           functions

xp1tJo(trp).]Fo<tre)dt

(4,20)
   are

clttdet

 o.
   S*'0sp

Hireshi KAwAliE

   p*  =  trr i,L' 

"'

 R  cos  e. ae.

      ...l-!,OOe-lxe-xp[tl,ctrp)J,(trQ)cxe

These integrals S, S:i`, P, PS[{ can  be expressed

by  the  complete  elliptic  integralsT) as  shown

in appendix  D  and  the kernel functions shown
in appcndix  E.

  The  properties of  the kernel functiuns are

in the same  manner  as  the two  dimensional

elastostatics,  The main  part of  the singularity

of  the kernel functions UT,(P, e) is logarith-
mic,  that of  1'}Ti<P, 9) is the normal  derivativc

of  log R.

  On  the integration of  the term  OS/0np, the
new  tunction T  may  be introducedi,

   T=-L2'P-S,'Oe-i=Q-xpltJi(tTp)Jo(trQ>dt
Then  S and  T  liave a  relat{on  as  follows ;

        OS 0T

      
rP

 an.  
=:

 
-
 asF

Thus, the integration uf  OSitOnp over  the ele-

ment  is carried  out  directly as;

   i ;7L+i ,pbO-.S... d,. ..  -  i ;n+i tttt.;. .a,.
   V v
     7} rt

                -  
-
 [T] ;i:+i

For  example,  taking the range  of integration
between  the point 1'n (1.0, 5.0> ancl  the peint
Pn+i(-1,O, 5.0) and  moving  the observation

point (? (O, rQ) frorn the origin  to a  arbitrary

          r

         r--l-=ny.  S:i'abn,s dsp

           Q{O,C,}

  e

   o

---

; . O.5

o

k3  4 5

  Fis., 17 Integration of  r ffSlevt
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point of r-axis,  we  rnay  calculate  the above

integral as  shown  in Fig. 17.
4,3.3 Numericalexamples

  Fig. 18 shows  the stress  around  a  spherical

cavity  in an  infinite elaLstic medium  under

the uniforrn  loading. The accuracy  of  compu-

tation of  stress  concentration  factor of  elliptic

cavity  for various  aspect  ratio  is plotted with

ayosOijI-

  2,e -

1,O

 -1Fig.

o

.o18

 o  Cal.-
 Exaci

%
q{-

-

egOD

 p

i
 9bq---"t)-"---

ul(q

Stresses around  a,

an  illfinite elastic

loading

spherical  cavity  hole in

medium  uiider  uniferm

the number  of  division N  of  a  quadrant  in

Fig, l9. Fig. 20 shows  displacements of a  solid

cylinder  under  the uniform  tension along  the
x-axis.  Fig. 2! shows  the stress  around  a

spherical  cavity  in an  infinil;e elastic  medium

under  the twisting load. Results are  in good
agreement  with  the exact  solutions.

4.4 PlatebendingProblemsii)
4,4.1 Boundaryintegraiequations

  Let  De  denotes the domain  on  which  the
lateral load g(xp,yp) acts.  The  boundary  in-
tegral equations  for deflect/ien w  are  given
as  fol!ows9)

f･r"/i/

          
T."/[I

    a:O  
h
 ] !- Tl=const

/.Tl 
":O

 .-.-...ll..um-..z 
r.=o

Axia[

---i

iill]
     1- --oL.t.tt.tt"

E
Fig,Disp,:u

Radlal Disp.:v.

20 Displacements  oi  a  solid  cylinder

   unifonn  tcnsion along  .v-axis
under

  10IErrorl

 
cio

1

O,1

O.Ol

%ae2-1X

     e

l-O:
 F2A.,

Tr-E:1-

 H-

'

Fig.

         5 10 20 30 40
                        N

19 Accuracy  of  computatien  of  stress  con-

   centration  factor of  elliptic  cavity  hole for

   various  aspect  ratio  with  the number  of

   divisjen N

 1,5[iept6w

1,O

O,5

F. ig. 21

o

e  Ca[-
 Exact

c

'cr-'

IY

                
-S6-･p

Stres$es aTound  a  sphe･ricaL  cavity  hole in

an  infinite e]astie  niediuni  undcr  twisting

load
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  ZW(9)  ==  SjD,g(i p)Yp)S(xp,yp,C?)  dxp clyp

        +S,[mn(P)-o:.S(P,e)
                      0
       

Hvn(l')S(P,9)-'b/m.'ve'(P)MnCP,9}

       +w(I')Vn(P,e)] dsp (4,21)

where

                       1
   S(xp, yp, 9) 

=SCP,Q)
 
==
 s.D  

R2
 
log

 
R

D  denotes the fiexural rigjdity.  m,t and  w)t is

the bending  mQment  and  the equivalent  trans-
verse  shear  force respectively.  The  keriiel
function Mn-･･etc. are  shown  in appendix  F,

  The  fundamental  solutien  S<P, e) is the same

as  that of  the two  dimensional elastostatics,

Therefore, the properties of  singularity  of the
1<ernel functions are  also  the  same.

4,4.2 Representation like as  source  and  sink

     or  doublet distribution in hydrodyna-
     MICS

  Investigate the exterior  ploblems, Eq. (4.21)
is complicated  and  ineenvenient because they

are  cornposed  of  two  sets  of  kernel functions,
Let us  try to simpliiy  the equation  to be
represented  by  one  set  of kernel function,

  Now,  the defiection in D  and  D  becomes  as

follows, respectively

   -I,[mn<p)'b9t'-.'scp,e)-wn(p)s(p,q)
          o

       
-
 on,. 

W(P)Mn(P,9)

       +w(l')Vn(J',9)] ds?
             ==-w(e)  inD)

             =o  in Dj (4･22)

Notation  is the same  as  Fig, 2 and  it is assumed
that  the  lateral lead is absent.  Tal<ing the

regular  function zv(")(P)  in the  domain  D,
the following integral vanislies  in D,

   wu i . [msp'(p) o9,i 
s(p,o -w £p)s (p,e)

          o

       
M'o.p

 ZYC"'(P)M(P,e)

Hiroshi KAwABE

+w[O)(P) Vts(P,e)] dsp

Addthe

   w(P)+w(O)(P)  ==o

    o o
    0n. 

Zev
 (l') + 

'ons
 
ZWCO)

 (P> ==  O

"Je obtain  tl'ie rcprcsentation  of

follows.

   te'(e) ==  
-
 !. [{,nn(P) +  m:･:"(P)}

         
-

 {Vn (P) +  
'v
 ,`,O'

On  the other  hallcl, iNJhell  the
ditions are  putted on  tractions

  =O  inD

ing Eq, (4.22) to Eq, (4,23) and

following boundary  conditions,

                   (P)}S(J),9)

                          boundar>

                         as  iollows

   mn(1')+mSM)(P)=O

                    ]                       on  C
   vn(P)+vS]'<P>=O

XVe obtain

  w(e)  at  S,[ i o9,. w(p)  +  o#. 
wco)(p)]M(p,g)

           
-{w(1')+w(U'(l')}Vn(P,9)]dsp

                                (4,27)
If we  take the regular  function wC") as  the  uni-

form  bending  field, Eq.  (4.25) and  Eq.  (4.27)
are  appropriate  to use  for stress  analysis

around  a  rigid  inclusion and  a  cavity  hole
respectively  in an  infinitc plate under  uni-

iorm bending.

4.4,3 Numerical computatien  for the uniform

     lataral loading

  The  numerical  computation  oi  Eq, (4.21) is
the same  as  in the two  dimensional elastosta-
tics. M･'hen tlie lateral Ioad acts  the  plate,
the integration over  thc  domain  Do  is needect.

Then  we  have  to do the numerical  integra-
tion over  the domain  Do, sucli  as  in the  FEM.
No  mattcr  what  unknowns  are  on  the bound-
ary,  the calculations  must  be done over

     (423)

   assumlng

  we  derive

 Ol'1 C

     {4.24)
deflection as

0
   s(p,e)O･np

] ds?
     (4,25)
     

r con-

      ;

     (4.26)
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                    The  Singularity Method  in

the whole  interior domain Do and  the ad-

vantage  of  the  BEM  is lost.

  However,  the lateral load g is usually  uni-

form  and  thcn the followinbcr method  is appli-
cable.Now,

 the  defiection ze, is governed by the

differential equation  as  follows,

    A2w:=:-S (4.28)

where  g is constant  over  the plate.
  This inliomogeneous equation  has a  general
solution  in the fellowing torm,e)

    W=ZWO+Wl

where

     A2zepn=:f (4.29)

     dL･ w,  ==e  (4,30)

where  tero is a  particular solution  for Eq.

<4,28) and  to/i is the homogeneous solution,

  We  may  find a  particular solution  Trvo for

a  uniform  loading for Eq. (4･,29), 
'for

 example,

as  follows,

     Wo==  6g-D- 
-(X2+Y2)2

 (4.31)

Then, the problem  is to obtain  the solution

ze;i which  satisfy  the boundary condition  as  a

whole.

  For  example,  in the case  of the clamped

plate, the boundary conditions  are  given as

follows,

     
Z

o

"

.

-'

Io

O

.=o
 l oiiC  (432)

So, the boundary  cendition  of  w  becomes  as

follows,

           ......E
zet1 =  -  Teto ::: -
            64D

OW,i OZE,o

(x2+y2)2

 e"..{tCOsa(x#+Xy2)

)F)
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where

               Ox . Oy
       

cos
 
oc=-

 on 
)
 

SM
 
ct:='b'ii'

Accordingly, the solution  wi  can  be ebtained

from  the  differential equation  (4.30) under  the

boundary  condition  (4.33). The boundary
,integral eguations  are  as  iollows,

    I . [M}" (P) 'a-Oda-.'S CP,9) um vei (P)S (P,e)] dsp

      ==  -  zevo(e) +  ! , [-b-e./i;-wo (P>Mn(P,O

        -  zeve(P)  Vn (P,e)] dsp
vrhere  unknowns  are  mn,  and  vn,  on  the  bound-
ary.4.4.4

 Numerical examples

  Fig. 22 sliows  the stresses  around  a  circular

hole in an  infinity extended  plate under  the

uniform  bending, Fig. 23 shows  the deflec-
tion and  the  bending  moment  of  a  circular

plate under  the uniform  late/ral load.

  Beth  results  in good  agreement  with  the

exact  solutions,

 2.0M91iCfie

1.5

1.0

.s

0n 0n   64D

+Sinct(x2y+ys)

(4,33)

Fis'. 22

f

Me Mo

R･((iiii)'A
   o  Cat.
 
Hm

 Exact
    -

O 90
                      e

Stresses around  a  circuler  hole  in an

infinite plate under  uniform  bending
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          (b)
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5. Conclusions

  In this report,  the general formulation oi

the singularity  method  (so-called the boun(1-
ary  element  method)  which  transform the

fundamcntal ditlerential equation  in the tlieo-
ry  of  elasticity  into the integral equation  is

studied  and  summarised  as  follows :

  (1) There exists  many  alternative  bound-
ary  integral equations  to be solved,  and  we

may  select  the Eavorable one  to solve  the

problem  considered.

  (2) The  usefull  one  of such  integral equa-
tions are  derived and  reprcsentcd  by one

species  of  singularity  as  the unknown  like as

source  and  sinks  or  doublet in hydrodynamics.

  (3) The  formulation of  the boundary  inte-

gral equations  for various  problems, i.e, the

two  dimensienal elastostatics,  the two  dimen-

sional  elastodynamics,  the  three  dimensional

elasto$tatics  and  the plate bending prob]ems,
are  sliown,

  <4) The  singular  properties of the kernel
function for each  problem are  studied  especial-

ly with  regard  to its analytical  and  numerical

mtegratlon.

  (5) To verify  its usefullness  and  accuracy,

some  immerical  examples  are  shown  in each

problem.
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            Appendix A

 Kernel function of  two  dimensional elasto-

statics

 Tii(p,e)= oe. [". o+ls+.V sin  2e]

 Ti2 (p,e) =  
-oO',-.

 [li." logR-- 
-1-
 g+i 

-V-
 cos  2o]

 TEi(P,9) ==  o2. [H:.,+, 
V

 log fir-ls+.V cos  2e]

 T2E(P,e) :=  -of. [ 21. 0-  !s+.U sin  2e]

 Uii (P,e) =t[Bs-."  (log R+  I[ ) -  IX.V cos  2e]

 U,2(P,e) ==  -  l6+.-}- sin  20

 U,i(P,e) =U,2CI),9)

 U22(P,e) =  tt [3s-.V (log R+  1) +lg-.V eos  2o]

            Appendix B

 Kernel  function of  two  dimensional semi-

infinit elastic  space  problems

f(e)= I .t?.,  [Uj (P) Tj<P,e) --Tj<P) U, CP,e)] ds.

 Tt(p,e) =f.  3,9. [(yQ-yp) iog 
rvi'F

        +  
Ye-E-

 
Y-g
 
-
 
-(YQiRY,p)R2

 1
 T2cpe)  ==  tl-.- o2. [(xq-xp) iog £,

        +  
XQ
 E-gla--(=i.r-e2:ii?f)R2 ]

 U!(P,e)=--2t  [1-5V (xQ-x.p) log RR,-

        
-(Yq-yp}(e+er)

        -(I-y)(XQ-Xp)'YXIYP]

 U2CP,e) =i;'  ['1 
-2'?-(gye-yp)

 iog RR,

        +(xe-xp)(e+e'II

        -5IllVy,+(1+v]i(yQ+yp)Yil,Y"]
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er ..  ta,rillL" i.r.Y". AppendixC
      VQ-Xy

                             Kernel function of  t"io dimensional elasto-

              
-""''''

 
'''

 
''''"'m"

 dynamics

T,i(p,e)  =-  
-a-
 [( ZY,.P )2 ,S. H:s)(kR) + ( OoX.: )2 69i.-ff:vcKR) + -[ll/f- -0,,l.' -,e. {H:')(hR) -  ffsa){KR)}]

        i es

      
-'ft/k-

 os.ofo-.iy-. {HSt",(hR)-flsp)(KR)}

T,t(p,Q) :=:  -tt--[( 
OoY,;)

 )2 o?. us?)(kR) +  ( OoX,,P. )2-b?,} Hs!)<KR) +k'P  kt? IS,l ;, {Hg2)<kR) -fls"(KR)}]

      + g -51,IJ [Hs2)( kR) + 
-)lr,
 
-5Z/IRiflls2)

 (kR> -Hs"  (KR)}]

T,2<p,g) =-g  [( OoX,.p )2-b?-. Hs2)ckR) 
-F
 ( OoY,: )2-oe;. Hs2)(KR) +-Z/l:i' gg-.p- 

-o9,.{Hg"(kR)
 -Hs2)(KR)}]

      H
 
'S
 a?. [US2'(kR)+ ki.- bOy2; {H:v)(kR)-llE"(KR)}]

7V  (I'･e) 
=t[

 (-Oo-X.f. ) 
2:,l;US!'(hR)

 + ('gYtX,i, ) 
!

 
-o',Oi,

 HSL'(KR) 
-
 
OoX.
 ;' '0oX'; of;{El62'(kR> nRge'(KR)  }]

        i e3

      
UF
 ptt2 

'o's'
 IJo' lb'.'bzi. {UF/2'<kR) 

-USL)
 (KR)}

                            tively. /( ) is the Hewman's  ramda  func-
          Appendix  D
                            tiOll
 Integrals S,S*, P`Pfi` expressed  l)y the com-

plete elliptic  integrals

     kK(k)
 s=
    2z(rprQ)if2

 s*=  2(rpre)if2E(h)
       rrh

 P== zkcT;r,)ii2  [(1' 5k2)K<k)-ECk)]
P':=;-i:1:,X,-")2ttiK(k)m'A(ct4'rs)+S "">rq

  =e..(  9.t. :.,".p)h-K(k)+ilJ. rp ==  rQ

  
:=--t(-XtQc,l

 il.iilft-K(k}+-A(",' 
fi)-
 7'p<ro

 k2., -..4rp.re .--.
    (Me-Xp)2+(re-rp)2
 oc:=sin-ik

 le ==  sin-i  l. (x,-x.) f{(x, 
-

 u.)2+  C7,, -r,,) 2}if2]

K(  ) and  E( ) denotes the  complete  elliptic

integral of  the first and  second  kind respec-

          Appendix  E

 Kernel function of  axi-svmmetric  elastic

porblem

             02S*          1
Ux'(P･9)

 
==

 
S-

 I(-/ 
'--v-)'

 
-D'hi'}';'

          1             02S*
U,･i(P,e)==

 
rg(l-v)

 ox.or.

          Ir                  0P
Ut2(P,9)

 
=

 
H
 4.o H  v) i/ (X(? 

-XP)
 
'or'.-

        +  ;. (Xemxp)Pl
u.!(p,e)= ia 

i-
 ,) I(s-4v>p+<xe-xp)-oO,SIB

T.t(p,e) -  -off. +  t 
,
 gi-:- oOi,

        
-2(}i-v')

 a?i'.(12xS.:)

T.i(p,e)-!g/lii},E-i:,Il,g,+,±
',,ha-l,i-,0.tLJ
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       -  '2' o'i- v) 
-aOfi.(

 o?itt"ip )
7･.2(p,e) -=-g;,:-,  -iltl,, + -,u-: 

,-
 g- ff.f ( g;t', +-;Jp)')

      H  '2o 
i-
 
,JI
 oO..( oO.t.i,' ;'. + ;. i,Si'iS)

       op  I ex. op
Tr2<P･e)

 
=='bi.iJ-r/L

 ]J on. b'IJ

      +1l,  gli- )-p

      "J 21 i 
i-
 
v)
 S'iL' (Oeii")

UQ(P,e>=P

          or. P      OI)
TQ  (P,q) =

 b'n. 
-

 
'afiJ

 
'r.

          Appendix F

 Kernel  function of  plate bending problem

       1
S(P,9) ==  s.D  R2 logR

-bai,i.-S(P,9) =:  -  s;D  C2R]og R+R)  co,  (e-..)
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-oO.-, S<P･ 9> =:  s;D  (2R]og R+R)  cos  (e-a,)

tt..O-5as S(l'･ e) =r  nv -s;D [(2 Iog; R+1)

       ･ c(}s (ctl]-ae)

      +2  cos  (e- st.) cos  e-aQ)]

Mn  (P,e) ==  !aliZ- log R+!s-.V  cos  2(e-  ct.)
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Vn<P,e) =:  be. [i,-, e+  ?tV sm  2(e-ec.)]

oO.-JM.{p,e>-li".Ct'(eR-l9{g.)

         +L4:--.v. sin2(elecpR> 
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'S,}zl', Vn<P,Q)=:: bO,. [=2-; 
S-i]'(0R-OCg)

          1-v  cos2(e-ctp)  fiin (O-pt.e2
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