ツツアナバチ Sphex muticus KOHL 習性に関する研究

川 田 長

I. 統 言

昆虫特に蜂類の習性研究は最も興味あるものであると考へます。私も甲州の山間に住んでいるので、この方面の観察研究に従事しました。その結果新しい研究を成すことが出来ましたので今回ツツアナバチについて発表させていたします。

ツツアナバチ Sphex muticus KOHL は黑色中形の狩猟蜂で個體数は多からざるものの如く種々なる管筒中に巣を作り、キリギリス科昆蟲を狩ってその幼蟲を飼育する極めて興味ある習性の蜂です。

本研究は主として 1927 年夏期に於けるものでありまして、私は當時東京目黒なる矢野宗経先生にその観察を求めて種々なる方面の御教示にあつきました。其後更に新たな知見を加へることが出来ましたので本文を草するに至りました。

最初に當てて矢野先生に謝意を表する次第です。もとより貧弱なる設備にて行つた研究故誤りも多く且つ不完全ではあると存じますが、その點は皆様の御叱正をあねがひをして止みません。

II. 観 察 記 録

本研究に於いて行ひたる実験観察の主第を主要なる部分のみかえる。これによってツツアナバチの習性を知ることが出来ると共に、研究の方法等も明らかになると思顧します。

研究観察の装置

昆虫は種々なる場所を選択してその巣を作り、その幼蟲を飼育す。故に竹、あし、ガラス管等を適當に装置すればその孔筒中に種々なる蜂を生させ、以てその研究に利便を得ること極めて大なり。

いかなる目的を以て筆者は種々なる方法によって竹、あし、ガラス管等を各
表
料
175

處に装置させり。
就中本研究の主要なる部分をなししたものは野外の一茅屋に装置せる五本のガラス管なり。此は数室の水車小屋の屋根蔵中にガラス管を夫々の距離を保つて水平に挿入し置きたるなり。勿論ガラス管は五本とも何等の色彩を施さず、又布片紙片にて巻かれり。
この五本のガラス管は以下述べるところのツツアナバチの習性について重要なより各管に様み固有なる番号を附しむることとす。
即ち下方にあるものより順次に上方に到るにしたがひ、第一管①、第二管②、
…………第五管⑤とす。これFig. 5に示せるが如し。
7月20日
第一管ツツアナバチの造巣に利用さる。房室二個完成。第一室（以下管の
奥より数へて第一室、第二室…………とす）には獲物たるキリギリス科昆
蟲八匹。第二室には六匹搬入されたり。（午後四時）
7月22日
第二管ついて利用され第一室は獲物六匹、第二室は一匹搬入されたり。
第一管は孵化し幼蟲は摂食中なり。（早朝）
夕刻見に、早朝9mm位なる第一管第一室の幼蟲は已に20mmに生長
す。第二管第一室の卵孵化す。第二室の獲物は十匹。郎も本日に於ける獲
物狩りは九匹なりしを知る。
第三管は獲物は搬入されざるも薬屑を以て房室の外形のみは略と完成せり。
7月23日
午後3時調査。第三管は折角獲物搬入中なり。その親蜂が直翅目キリギリ
ス科の幼蟲を房室内に搬入するを精細に観察す。第二管第二室は例外とし
て二回の産卵行はる。郎も一房室内にて二匹の獲物がその胸部にツツアナ
バチの産卵を受けたり。而して一匹は房室の奥部に位し、他の一匹は出口
に位す。
第一管第一室の幼蟲は30mmに生長し残存せる獲物即ち食餌は只一匹
なり。本日は五本のガラス管の固有の位置を変更して親蜂をデレンマにかいら
しめたり。
7月24日
雨天にて午後の調査によれば昨日と大差なし。但し第三管の管口の薬屑は
昨日に比してその量多くつめ込まれたり。
第一、第二、第三管を屋根より括き取り之を家に持ちかへりて調査す。第
一管第一室のものは薬の外層製作中なり。
幼虫の摂食法について三種の実験を行へり。此が方法及びその結果は後章
に於いて詳述すべす。
第一実験——第二管第二室は産卵二個なりしかば之を分離して二房室とな
し実験す。
第二実験——第三管第一室につき行へり。
第三実験——第三管第二室につき行へり。
7月25日
第一管第一室は繭の内層製作中なり。管内は幼虫の発育に伴ひ湿気を帯び、
薬屑には一種の菌類を生す。
午前十時。蜂は第四管を利用中にして薬屋根の斜面よりしきりに屑を採取
し、之を管内に搬入し房室の製作をなしつつあり。蜂の隙を窺ひ折角搬入
せる屑を除去し更に観察を行ふ。
午後に到りて第一管第二室繭の製作に着手す。
7月26日
第二管第一室繭の外層製作に着手。
昨実験のため屑を除去せられたるに拘らず蜂は更に第四管に薬屑搬入中な
り。而して房室は略一完成す。
7月27日
第二管第二室の繭内層略一完成。第二管第二室外層完成。第二管第三室は
食餌たる獲物を全部食す。
第二管第一室の幼虫卵化す。
夕刻第四管は獲物六匹搬入されたり。但し房室は一個。その産卵も終りに
至りしものの如し。
幼虫の摂食法に対する第三実験は失敗に帰す。
7月28日
午後に時折から獲物を狩りて之を管中に搬入せる蜂を捕へて持ちかへり、
キリギリス科幼虫に対する狩りの方法につき実験し大成功を収めたり。
第一管第二室卵化す。
第二管第三室繭の外層完成。
7月30日
ツツアナバチによって利用させたる種々の孔筒の口徑を測定し、向繭の管
口に対して極る (+) (-) の両方向につき調査す。
8月初旬より中旬へかけて H 地に旅行し観察中止の止むなき事情となる。
8月14日
かつてガラス管を装置せる附近の竹筒中に本種の巢を発見し（これガラス
管利用前に造巣され るものなり き。 調査の結果数種の寄生昆虫を得たり。

8月16日
第一管成虫出現す。

8月20日
第二管第一室午後になって成虫出現。

8月21日
第二管第二室及び第三室の成虫出現。
以上の記録によりツツアナバチの発育経過を要約すれば次表の如し。

第一表は更に第二表の如く示すことを得。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>成育成数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>產卵 月日</td>
<td>孵化 月日</td>
<td>成育月手</td>
<td>成育成数</td>
</tr>
<tr>
<td>I, 1.</td>
<td>7→20</td>
<td>7→21</td>
<td>7→24</td>
<td>8→18</td>
</tr>
<tr>
<td>I, 2.</td>
<td>7→20</td>
<td>7→21</td>
<td>7→26</td>
<td>8→18</td>
</tr>
<tr>
<td>II, 1.</td>
<td>7→21</td>
<td>7→22</td>
<td>7→26</td>
<td>8→20</td>
</tr>
<tr>
<td>II, 2.</td>
<td>7→21</td>
<td>7→22</td>
<td>7→27</td>
<td>8→21</td>
</tr>
<tr>
<td>II, 3.</td>
<td>7→22</td>
<td>7→23</td>
<td>7→28</td>
<td>8→21</td>
</tr>
<tr>
<td>III, 1.</td>
<td>7→23</td>
<td>7→24</td>
<td>7→30</td>
<td>8→21</td>
</tr>
<tr>
<td>III, 2.</td>
<td>7→24</td>
<td>7→25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>1</td>
<td>4.5</td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

第 二 表

III. ツツアナバチの卵期（Fig. 1. 参照）

卵は乳白色にして半透明、レンナ形にして前後両端は細まる。長さは2.5
mm内外。卵の前端（+）は少しく茶褐色を帯び孵化すれば幼虫の頭部となる。

産卵は一囲室中にて最初に搬入され る獲物に行はるもの普通とす。

産卵位置は確定的のものにして獲物たる直翅目昆虫の胸部前脚の左右何れかの基部凹入なり。
卵期間は極めて短かくして、産卵の翌日、郎ち普通24時間内外なり。
IV. 幼虫期（Fig.2参照）

孵化した幼虫は乳白色にして3mm内外。その頭部は食餌なる直翅目幼虫の体巣に挿入されると如き関係にあり。故に幼虫は直ちにその産卵されたる位置より食餌の体内に食入し行く。

卵が決定的に食餌となるべき昆虫の前脚基部の凹處に産下さるる事實は幼虫の発育にとっては重大なる関係を有するものなり。以下この點につき少しく考察せんとす。

産卵位置と幼虫発育の関係

ツツアナバチの親蜂は幼虫の発育に必要なる食餌の量を観察せるものに如く、単に必要にして充分なるだけの獲物を狩って一房室内に脅入貯蔵す。而してこの獲物は連続的に搬入され、一度必要なる量を搬入すれば蜂は房室を閉じて再び巣にかへり来らず。故に幼虫の食餌は或期間生鮮のまま保存されざる可らず。こに於いて最も興味ある食餌昆虫の篩選法が本能的に行はる。

その魔睡を受けたる食餌昆虫は実験の結果によれば一ヶ月内外はその生命を保つ。この期間に於ては自由なる運動不可能にして少しくこれに刺戟を與える時は動駆、口器は多少の運動をなす。且つ呼吸作用、排泄作用は連続して行はれ、しばしば黒褐色る粪を排泄す。此の如く食餌昆虫が生命を相當の期間保つ故に、その産卵は警り多少の食餌昆虫の運動ありとするも且つ安全なる位置に搬入せざる可らず。而してこの目的に適したる位置は前記せる如く胸部前脚の基部なり。殊に産卵されたる食餌昆虫はそのものよりも少し離れて房室内に安置せらるる傾向ありてこれがために孵化したる幼虫も比較的安全に生育するを得るなり。かくして幼虫は次第に食餌を平らげて成長す。その食餌は驚ろく程強烈なり。

摂食法併びにその実験

産卵位置より直ちに食入したる幼虫は一瞬の休息もなく食事を経ずる。胸部の中味を食しすれば直ちに腹部の中味を食し初む。幼虫の體は見る間に肥大し皮膚は光澤を帯び来たり。而して腹部の中味を食し尽くまでその頭部を決して外に現はさず。かに幼虫の摂食法は従来幼虫の體形の上に明らかに認められるところなり。即ち幼虫は體の尾端肥大し、その前部に至るに従じて細し。その皮膚は透明にして内臓機関を透視し得。血管はたえず収縮し筋肉は後後に運動す。かくして孵化後約二日にして幼虫は最初の食餌の中味を完全に食し尽し初めてその頭部を食餌の體外に現はす。次には食餌の皮膚、脚を初めとして複眼大や前の中味まで少しの残すところなく食する。この頃に至れば體長35mmに達す。
第二目食餌以後はその摂食法に第一目如き確定的な方法行はるず。さ
れて次の如き注目すべき傾向あり。即ち食餌の頭部又は胸部より食し初める
ことこれなり。これは一房室内に搬入されたり数匹の蠣物のすべてが、その頭
部を奥にして上向きに置かるるに因るものならは明らかなり。

孵化後三日頃より幼蠣は赤褐味を帯ぶるも約半
日の後再び舊の乳白色に還す。

以上の如くして食餌は驚べき速さを以って平
げられ孵化後四五日にしてその體長は 40 mm 以
上に達す。更にその體側に圖味ある瘤状の隆起列
を生ず。この隆起は各節毎に並立し體は稍く扁平
となり。6 日頃に雌は即ち已に食餌を食すして幼
蠣は発育の頂点に達す。これFig. 2 に示せるが如し。

次に幼蠣の摂食法につきてなさせる実験並びにその結果につき考察のため記す
ことなり。

その実験は、第一目食餌の摂食法は確定的ものなるにより、今幼蠣の
位置を変更せる時果して完全に発育するや否やを決定せんために行ひたるもの
なり。

（実験第一）

第二管第二室は例外として二個の産卵行はれその食餌数は十匹。

先づこれを二ヶの房室に分離せんとす。初め管の入口に塞がれた葉層をピ
ンセット以て除去す。次にその入口に近く産卵を受けたる一匹の食餌幼蠣
を引き出し、綴へて食餌の量を等分にするために更に四匹を引出する。そのあ
とに葉層をますむに閉へて房室の仕切りとなす。

ついて産卵を受けたるものにして最初引き出すだる食餌幼蠣を紙上におく。
當時已にその卵は孵化して幼蠣は 6 mm 位ならゆ。この幼蠣を柔らかなる
毛筆を使用して静かに後方にスル。かくすることに依り、今まで食餌の體内
に食いし居たる幼蠣の體は次第に现はれ遂に全く體外に脱す。幼蠣の脱したる
跡は小孔をなさり。

次にピンセットを使用して食餌幼蠣の腹部前端をつまみ上げ、鉄を以て
剪り開く。そのきり口よりは液汁溢出す。而して幼蠣の頭部にその切開孔中に
挿入したり。ついてこれ等実験をなしたるもの及び他の四匹の食餌をガラス
管内に収容し、その結果につき観察をつうけたり。

（実験第二）

第三管第一室のものは孵化したばかりなり。これを第一の実験と同様なる
方法により幼蠣を食餌の腹部にうつす。
（実験第三）
第三管第二室は未だ卵の状態なり。之をその附着部より分離して食餌の後脚基部にうつす。
（実験の結果）
第一、第二の実験に於いてその食餌昆蟲の腹部を切開せし時、嘔て見ざる動揺を示せり。然れども実験の結果は普通に於けると同様にして幼蟲は発育し蛹化し、成蟲となれり。
第三の実験結果は、先づ卵は孵るに於て幼蟲となれり。而してそのまま食餌の體内に食入して発育するもののも如くなり、又二三日の後遂に期待は要切られ、幼蟲は死して腐敗するの失敗の原因は明白なり。単ち自然の状態に産卵された卵はその前端を食餌昆蟲の體中に入れるを以て、孵化した幼蟲は直ちに食事にうつることを得。然るに実験に於いて卵は単に食餌昆蟲の體上に置かれたるのみなりしかるし、孵化したる幼蟲は口器胸弱にて食餌の皮膚を喰い破りて食事にうつすること不可なりし。故に若し卵の位置は変更するも卵化したら幼蟲をして直ちに食事に就かしめ得る如くせばこの実験も成功することを信ず。
発育を全うせる幼蟲は約半日の絶食をなしにて幼蟲の製作に着手す。
造造法及び卵の構造
卵は内外二層より成る。外層は極めて薄くしてその繊は粗雑なり。内層は茶褐色にて完成の後更に淡き黒褐色となる。その内面は光澤を有して滑らかなり。外層は主として内層を固定し且つ卵の位置を保つ。外形は一方に細まらぬ長楕円に近くしてその細まらぬ先端に内外兩層共に突出管を有す。この突出は長さ約3mmにしてその如何なる作用をなすものなるやは興味ある点なり。卵は全長30mm以下にして卵の中にある卵は必ずその尾端を突出管の方向にうくものとす。
食餌の全部を食したる幼蟲は約半日間の絶食をなし、この間にその體は幾分縮少し且つ黄色味を帯び来たり。
造造の本能現はるるや幼蟲は初めて活動を開始す。先づ最初に喰りて綿を附着せしむべき何物かを要す。而して如何なる大いさの緒を造るべきかを幼蟲は豫見せるもの如く活動す。単にこれがためには房室の廣狭、換言すれば利用されたり管筒の口径の大小を考慮せざる可らず。
口徑比較的大にして緒の大いさよりも房室遙かに廣さ時は、幼蟲はその廣さを適當に縮少す。これが為に幼蟲は房室の仕切りに用ひらたる薬筒の顔を利用す。その口器を以て端をくむへ、之を手前に引きて房室内に散在せしむ。かくの如くして房室の廣さを適當に調節す。若し管筒の口徑小にして房室も廣
蛹変

孵化以来幼児は全然固形物の排泄を行わず。繭の完成後蛹化に先立って初めその排泄作用を行う。即ち体中の排泄物は完全に排泄して虫を突出管の存する方の隅に押附するなり。此がためにその部分は黒間にて透視し得。

更に繭の内層を排泄物を以て塗抹するものと云し。排泄をなし得る後幼虫は蛹化して蛹となる。突出管の存在についてはその如何なる作用をなすものなりや考察の要あり。観察によればこの部分は常に湿気を有す。即ち造蛹中幼虫がこの管を通じて外部に排泄をなすものにありき。又蛹化の際に必ずこの突出管に向って固形排泄物の押附けられるも興味ある問題なり。

V. 蛹期

蛹が必ず突出管の方向にその尾端をむくことは既に記述したる處なり。蛹化当初體は一般に乳白色なれども時日の経過と共に部分的に黒変す。

蛹化後3,4日頃の蛹は體長25mm内
外。全体黄色を呈し腫眼は黒線。触角は略頭部と胸部の合に等長なり。腹部は極めて細くして腹部は長椭円。内四節には側方に小さな突起を有す。左右の脚及び触角は體に沿って位置す。

蛹期は全然不動状態なるもこれに刺戟をあたふれば局部的に運動す。
蛹化後15日—20日にして脱皮す こしに初めて成虫となるなり。

然れどもしばらくは體内に止まりて翅、脚等の充分に発育するを待つ。
蛹の管口に対して直る方向に二つあり。一つは頭部を管口に関けるもの (之を (+) を以て表はす) 他は尾端を管口に関けるものなり。(之を (−) とす) これらの二つの反対方向は造種に際して既に決定するものなり。

（Fig. 4 参照）

管筒の貫入なる時期は (+) (−) 任意なれども狭小なる時は必ず (−) 方向を執る。
而してこの (+) (−) によって成蟲出現に際し興味ある観察をなすことを得る。

VI. 成 蟲 期

成蟲の出現
細腰蜂科昆蟲の大部分は孤獨的生活をなすものにして、本種も亦その代表的なものなり。故にその習性の観察は餘程の幸運に恵まれざれば之を完成することを得ず。

ツツアナバチは繁殖の候成蟲となる。成蟲となるや暫く管の中に在り、やがて翅を破りて出現す。本種が管筒の出入口に対して (+) (−) の二方向を執りて造種、蛹化するは既に記述せる所なるが、成蟲はその頭部を向けたる方向に出現せんとする傾向あり。故に (−) 方向のものは直ちに出現するを得れども (+) 方向にありしごのは之に反す。一旦その頭部の方向に進みて探索しその不可能なるを知るや振り返りてやがて外界に出現す。尤も成蟲の出現にてて明暗の関係するは明らかなり。出現するには房室の隔壁なる篭屑等を脚及び口器にて排除す。

かくして出現したる蜂は灼熱の夏日も自由に飛翔し、時折は四邊の草花にその蜜を吸収す。

交 尾 法
出現せる成蟲はやがて巢を営みその幼蟲を飼育せざる可く。然れどもその
以前に必要なのは交尾なり。
一度に造巢に着手すれば、連日の材料採集週に獲物狩り等にて再び雌雄相合するの機会なくするべし。
然らば本種の交尾は如何にして行なるものか？撃しむらくは筆者も本種の交尾法につきては之を観察せしげと知れど、デガバチ Ammophila in'esta Smith につきては未おればその大略を記述することす。その故はツツアバチも恐らくはデガバチと大同小異なる方法によりて交尾をなすものにあらざるかと信ずればなり。
デガバチは日常よりよき土に棲む、特に砂利多き地方は好愛するものに如し。その飛行するや思い切リ尾端を揚げ、脚は捥へ下方に吊す。而して體と脚とは略3丁字状をなす。交尾期には多数数り雌は雄の後を追ひ飛行す。時には一雌を二雄、三雄にて追跡することあり。雄は地上一尺位の高さを自由に飛行するなり。雌も雄は雌に飛びかいり、二匹はクルクルと空中に輪をかがく。交尾に成功せる場合は地上に組みつくれつつすることを時時なり。不成功に丁りたるものは追ひつつ追はれつつ造か上空にまで直線的に上昇す。雄は如何にしても目的を達せんとあせるとなり。
恐らくはツツアバチもかえる方法により交尾をなすものにあらざるが。

造　巢
交尾終るや雌は何れかに姿を消失せりも雌はいよいよ造巢に着手す。本種の造巣につき松村博士はその高著千虫圖解に「本種は本邦稀ならざる種類にして、竹、わら、あし等の筒中の造巣する」と記載せられたり。されどこれ等の竹、あしは自然生育の状態に直立したるものにあらずして、人工的に使用されたものなり。
今筆者の調査によれば本種の造巣に利用されたるは
1. 竹の食害させる樹木の孔
2. 屋根に使用せり竹筒中
3. 其他種々使用せり竹筒中
4. あし、麻等の筒中
5. 特別に装置せりガラス管
なり。
而してその造巣につきて最も重要なるのは利用されるべき管筒の口徑にして、大小何れに失するも巣は答えず。調査の結果によれば管筒の口徑は最少 9 mm 最大 30 mm 最も普通に利用されるものは 15 mm 附近のものなり。
これ造巣材料、獲物漁入、造巣等と関係を有するものにて、管筒の口徑小なる時は蜂の活動は徒らに困窮するに反し、大に失する時は造巣、房室の材料
採取等に不経済なる労働を招致するに依る

以上によって考察する時、松村博士の所謂「巢の筒中に造巣する」ことは疑問にして、例へかいることありとするも恐らくは萬分の一なるべし。その故に

造巣すべき孔縄を決定した蜂は材料なるべき屑を採取して居室を造る。

1927年7月25日筆者は詳細にこの點につき考察するを得た。この前日は第
一、第二、第三ガラス管は筆者によって居根より撤去されしも、蜂は何等異髪の起らざしもの如く第四管を利用中なり

當時その材料なる薬屑はガラス管の装置され居根の斜面より蜂によりて
採集されたり。蜂は触角を以って調査し、茶褐色の翅をペラペラふるはせつつ
居根の斜面を於ける。その斜面は長日月に亘る風雨に依って薬は適度に細片となれり。蜂は大巣を開いてこの屑を薬はへ、滿身の力をこめて引き抜く。か
くして採取した屑をガラス管内に撤入す。

その撤入径路は極めて興味あるものにして獲物撤入と同一径路を辿る。これ
が考察は暫くおくことす。

屑を撤入した蜂はやがて管より出で来たり再び居根の斜面に採取行く。
かくの如くすること数多にしてその居室を先ず完成するなり。

今丁度蜂は斜面に出てて屑を採取中なる際に乗じて筆者は今しも利用中のガ
ラス管を居根より引き抜きに完成に近き居室の屑を全部除去し再び空管を元
位置にして居室を織行せり。

蜂はやがて屑をはへて管内に入れる。暫くして出で来たり何等の変事も起
らざりしものに如く共の後えの採取をつくわけたち。今空管の代りに已有居室の完
成したものを以つてする時は蜂は明らかに混戦状態に入るものなり。その実
験結果は獲物撤入法のところに於いて説明すべし。

以上の如く多くの場合造巣材料は薬屑なるも野外に於ける筆者の観察調
査によって更に枯草、スギゴケ類の利用する知るなり。

獲物狩り

居室完成すれば連続的に獲物狩り行はる。これとその狩りの光景は廣大なる
野外にありて之を目撃するは極めて困難なり。

筆者は1927年7月28日本種の雌蜂を捕へ来たりその獲物なるキッチンズ科
昆蟲を之に興へて狩の方法を實験し成功せり。

以下之が記述をなさんとす。

先づ前記せる第四ガラス管を利用して獲物撤入中なる蜂を捕へて之を實験用
金網中に放つ。更に野外より採集させるキッチンズ科幼蟲を同じ金網中に放つ。

放たれた蜂はしばらくの間只管自由の身にならんとしてあり処の中をブ
蜂類

蜂類の狩猟行動は次の通りである。

1. まず、蜂は獲物を観察し、適切な時期に針を刺す。
2. 猫の頭部に刺した後、蜂は獲物を引きずり、他の蜂に示す。
3. 獲物はその後に他の蜂に食べられる。

以上のように、蜂類の狩猟行動は高度に協力的である。

なお、上の情報は日本語の文献から翻訳したものです。
キリギリス科 Aerididae
1. セスデツツムシ Dacetia japonica JUNBERG
2. クビキリバッタ Conocephalus thunbergi STOLL
3. ツユムシ Phaneroptera nigroantennata BRUNNER
4. ウマオヒムシ Hexacentrus unicolor SERVILLE
5. コバネササキリ Xiphidium japonicum REDTENBACHER
6. クツハムシ (?) Meccopoda nipponensis SAUSSURE

獲物搬入法及び搬入径路の考察
1927年7月23日より28日に亘りて筆者は詳細に獲物搬入法につき観察せり。

蜂は獲物を抱へ更に大骸を以つてはへつつ飛び来り、薬屋根に止まりて之をガラス管中に挿す。管中に頭部を先きにして入り一旦房外に獲物を置く。次に房室の隔壁なるたるを押し分けて房室内に入り其處にて體の方向を変へ管口の方に挿り向く。而して今房室内に入り込む時に作るる間隙より體の前部を現はし、獲物の触角をくはへて之を房室内に引き入る。

引き入れたる獲物は仰向けとしてその頭部を房室の奥に向けやがて蜂は出で来り。房室外に出でたる蜂は再び方向を反転し、出入りよりて生じたる隔壁の間隙を塞ぐ。脚を以って尾を押附け、大骸を以って尾を揃へて片附ける。

かくて蜂が完全に閉塞され寄生菌の侵入に対する不安を除去したる後蜂は再び振り返りて次の獲物狩りに出発す。

本種は獲物搬入中は多少の異常あるも無関心に活動す。即ち上述せる観察は獲物を蜂が管内に搬入したりする時直ちにガラス管を薬屋根より抜き出だし、筆者が手に持ちたる器にて行ひしものなり。管を抜き出しはささらや透明なるため強烈なる日光光線管内に入射せり。これど蜂は常に同じく獲物を搬入せしめられども一度本能作用出現すれば、蜂はその他のことに就てはその異常を感受すること困難なるものなり。如し。

次に本種がその造巣材料なる土種および獲物をその巣に搬入する場合には特殊なる径路を辿るものなり。以下之が説明するために考察をなすべし。

蜂は先づ薬屋根の任意の点に止まる。これより巣に達するには三ツの様式に含まるる径路を辿るものなり。（Fig. 5参照）

Fig. 5 搬入径路の各様式を示す。但し點線にて示したる（c）は管より出づる場合にして定まりたる様式なり。
資料

約十数つつあることである。確かに山頂から見下ろして螺河に近づくと、その美しい風景が一望できる。第二の観点は（b）（d）を以て示すことを得。郎ち蜂は屋根の半面を巡りにて下方に通る上方に進みて巣に達する。此の三つの様式に於て（a）（c）は最も普通に巣層崩入の場合に採用される径路にして、（d）は獲物崩入の場合に於ける蜂の径路なり。

然らば蜂は何故にかいる徑路を辿りて巣に達するか。

今蜂が任意の點より直線的に屋根の側面に出ててその巣に向って進行することとす。然る時は蜂の達し得べき側面の點は常に変動ありて一定せず。故に蜂はその點より上方に進むべきか、下方に進むべきかの判然に困窮し、たくして時間を比較的に瞬費する結果となるべし。故に一見不経済なる前點の三徑路は最も確実にして且つ短時間にその巣に達し得べく方法なり。蜂がその巣より出づる時は特別の徑路なく直ちに巣層採取、獲物特に出発するものなり。郎ち図に於いて點線を以て示したり。巣の記憶

本種がその巣に対する記憶は極めて強烈なり。これが実際に7月23日に行なへり。當日蜂は第三管利用中なりき。この時にあるて第一、第二管は已に利用され、第四、第五管は空管なり。

丁度蜂が獲物狩りに出発して不在なる際、筆者は第二管と第三管を交換せり。約十分間の後蜂は歸り来たりL點に達して側面に現れその巣に向へり。而して第三管の元位置に達するか急激なる驚驚の色を示したり。郎ち共監には已に利用しつくされたる第二管ありて折角求むる第三管なければならぬ。蜂は獲物をくへたるまで附近を探し求めるもの如くあれども他方に行進出ず。かくする中に蜂は管の位置よりも、はるかに上方に進み次下方に進み、往復すること数回なり。蜂の驚驚を言えむかしく遂には棄狂の姿となり獲物を保持したりますます小距離の飛行を開始す。此の飛行は少時続きもし遂に偶然第三管を発見し蜂は觸角を以てて調査の後その中に入る。約一一分半の後蜂は管口に出て来たり新位置の巣を調べて後飛去せり。

此の如く蜂はその巣の位置わづかに150mmを纏めさるるも已にその巣を発見すること困難なり。この間に在って蜂は第三管の元位置を通じる度に觸角を以てて調査し、更に新位置の第三管の附近も何度となく上下せしなり。
毎日出でて何れかに蜜を消したる蜂は約一時間の後帰り来るる。この間に第三管と第四管とを交換し置きたりしが、蜂は直ちに第四管に入り、しばらくの後で来たり何れかに飛去する。後にして再び帰り来たりしも筆者の姿を認めて飛去す。この頃より大雷雨となりしかば観察を中止す。其後第四管が利用されしおことをついては已に記述しうるなり。

以上の管の交換につき図を以つて示せば即ちFig.6の如し。

かくの如くしてツツアナバチがその巢への歸還及び巣の記憶に関しては極めて強弱なる記憶力を有することを知る。

更に装置したるガラス管が順次下方より①②③……と利用造巣されたりも注目に値すべき事質なり。

産卵法

本種は一房室に於いて最初に彼入させる獲物に産卵す。その産卵位置は獲物の前脚基部四處なり。一雌は少なくとも十個以上の産卵をなす。

管筒を利用し観せると蜂は更にその口を蕊屑を以って堅く塞ぎ、何れかに蜜を消して再び巣に帰来せず。

VII. 寄生昆蟲数種

ツツアナバチの巢中にには次の寄生昆蟲あることを知れり。

1) ヤドリバヘ　種名未詳

本種は紡人蜂の巢には共通に寄生してその獲物を奪ひ且つ宿主の幼蟲を害す。之が習性は極めて興味あり。他日稿を新たにして記述するところあるべし。

2) ヒメマルカツラブシミ幼蟲 Anthrenus Verbraci LINNAEUS

ツツアナバチの蛹期に於いて之を食害することを確かめたり。尚前記寄生蠅の蛹をも食す。

3) シラミダ = Pedicoloides ventricosus NEUPORT

家蠅の寄敵として恐れられる一類のダニにして雌は淡黄色圓形、雄は極めて小形活動的にして、ツツアナバチの幼蟲、時には蛹にも寄生してその血液を吸収す。

専卵蜂の一種ありて前記寄生蠅に多数寄生す。
VIII．摘　要
卵 資料の前脚基部に産下されバナナ形にして長さ約2.5mmなり。卵期は普通一日未満なり。
幼蟲 孵化した幼蟲は直ちに食餌昆虫の体内に入り。最初第一匹は一定する摂食法を有。即ち産卵された位置より食餌の内部を食し終りて初めて體を現はす。幼蟲の発育は極めて迅速にして成蟲したるものは乳黄色を呈し體側に隆起列あり。幼蟲期は約5.6日にしてその食餌は餘すところなく食はす。
房を製作するには房室を適當の広さに保ち外層の製作を終りて内層を製作す。繭は一方に突出管を有す。之が機能につきては詳ならざれども、幼蟲の排泄作用に関係あるもの如し。
蛹化するに當てて初めて固形排泄物を突出管の方向に排泄す。
繭は入口に対して（+）（－）の二方向を執る。
蛹 初め乳白色なりを漸次黒変す。蛹は絶対の不動状態にして、その頭部を必ず突出管の反対方向にむく。
成蟲 初夏の候に至て出現す。出現せんとするや繭を破り、突出管の方向より出現せんとする傾向あり。
造巣材料は藁屑、枯草、すじごけ等にして利用すべき管筒の直徑は15mm内外を普通とす。
房室を完成して後獲物狩りを行ふ。その獲物はキリギリス科の幼蟲に限る。
その狩りの方法は一定にして喉下神経球について第一、第二、第三神経球を魔酔す。魔酔されたる獲物は一ヶ月餘その生命を保ちて腐敗を免がる。
獲物搬入は細心の注意を以つて寄生蜂に冒されることなき様行はる。その産卵は最初に挿入させる獲物に行ければ一房室の獲物は平均六匹なり。
本種が巣に関する記憶は極めて強烈なり。一雌の蜂は約十卵を産下す。