P13-5
微生物燃料電池による低環境負荷嫌気性排水処理システムの検討
〇細川 拓也1, 鈴木 深2, 原谷 弘樹2, 久保田 博子1, 田代 陽介1, 二又 裕之1
1静大・院・工, 2静大・創造科技院

現在、全国で用いられている排水処理技術として活性汚泥法が挙げられる。この処理方法は高
処理速度や窒素除去などの利点を持つが、曝気による多大なエネルギーコスト、大量の余剰汚泥
の発生、またその焼却処理による多量の二酸化炭素発生などの問題点があり、環境に対する負荷
の低減が求められている。そこで嫌気的排水処理が挙げられるが、実用化のためには都市排水な
どの低濃度排水での処理効率を向上させる必要がある。本研究では、微生物燃料電池(MFC)を用い
た電子フロー制御による嫌気性燃料電池の促進を提案し、効果的な排水処理の構築を目的とした。
初期COD約3100 mg・L⁻¹の人工排水に水田土壌0.5 gを接種源として容積50 mLのMFCリアクターを嫌気的
に構築した。51 Ωの外部抵抗を用いた閉回路系、バイオミクノリゼーションによって得られた蓄放電物質
(BNM)を添加した閉回路系、コントロールとして開回路系を構築した。COD測定の結果、培養10日目におけ
るCOD除去率が嫌気開回路系では約50%であったのに対してBNM添加嫌気開回路系では約76%であり、最も
速いCOD除去速度を達成した。この結果はBNMの有用性および嫌気性排水処理の実用化を示唆した。一方、
BNM添加嫌気閉回路系および嫌気開回路系では50%のCOD除去率達成に14日間必要であった。以上により
BNMの添加や開回路系においての電子フローの変化が示された。本研究結果は温熱効果ガス
発生の削減に効果的な嫌気性排水処理プロセスの実現可能性を示唆している。現在、容積を2 Lにスケールアップしたリアクターを用いた解析を実施中である。

P13-6
ウシ・ルーメン微生物のセルラーゼおよびキシラナーゼ活性を利用したメタン発酵システムの開発
〇馬場 保徳1, 李 哲揆2, 多田 千佳1, 福田 康弘1, 藤野 雅典1, 中井 裕1
1東北大・院・農, 2JSPS, 3東大・院・農

【背景・目的】植物性バイオマスをメタン発酵に供する場合、リグノセルロースの可溶化が律速段階と
なる。一方、と畜場廃棄物であるルーメン液（ウシ第一胃内容物）には、リグノセルロース分解微生物や酵素が含まれている。このことに注目し、ルーメン液を生物触媒として、前処理に用い、メタン生産量の向上
を検討することにした。

【方法】植物性バイオマスとしては、古紙およびナタネ栽培残さ（おもに茎葉部）を用いた。細切
後、ルーメン液中で、嫌気条件下、37℃、6もしくは24時間前処理した。処理物をメタン発酵種汚泥と
混和し、35℃でメタン発酵を行った。酵素活性は、Mshandete et al.（2005）の方法に準じて、測定した。

【結果・考察】前処理により、古紙/ナタネは可溶化され、揮発性脂肪酸を生産した。処理物をメタン発酵
に供したところ、対照区（前処理無し）に比べ、メタン生成量は古紙で2.6倍、ナタネで1.6倍向上した。
メタン発酵の基質であるセルロースおよびキシロースの加水分解に寄与するエンド/エキソグルカナーゼお
よびキシラナーゼ活性は、前処理において、最大でそれぞれ30および250 unit/Lであった。一方、メタ
ン発酵（対照区および前処理区）において検出されたこれらの活性は、最大でそれぞれ約1および約50 unit/ 
Lであった。すなわち、前処理における高い加水分解酵素活性が、基質の可溶化を促進し、メタン生産量の
向上に寄与することが示唆された。16S rDNAを標的としたPCR-DGGE解析の結果、Prevotella属が、前処理の
キシラナーゼ活性に関与することが示唆された。