F314

小型超音速実験機の超音速自然層流翼コンセプトの検証

Transition Characteristics of Non-powered Experimental Airplane at Mach 2

杉浦裕樹、高木正平、徳川直子、西沢啓（筑波大）
Hiroki Sugiiura, Naoko Tokugawa, Shohi Takagi, Akira Nishizawa (National Aerospace Laboratory)

Abstract: Transition on the natural laminar flow wing of a non-powered scaled supersonic experimental airplane was measured by hot-film sensors and an infrared camera at Mach 2. In order to suppress the growth of crossflow instability which dominate the transition on highly swept wing, the pressure falls very rapidly in the vicinity of leading edge of the wing, so as to minimize the crossflow velocity components. The unit Reynolds numbers had no effect on the transition Reynolds numbers of the wing. The transition Reynolds numbers was 0.8 million at 70% semi-spanwise location at Mach2 at the angle of attack of 2 degrees. We estimated the transition location in quiet high Reynolds number environment at flight by conducting transition measurement in a quiet low Reynolds number wind tunnel and in a variable unit Reynolds number wind tunnel which has moderately low turbulence. The transition at 70% semi-spanwise location at Mach2 at the angle of attack of 2 degrees at flight is predicted to be located downstream of 60 percent chordwise position.

序論
一般に次世代超音速旅客機（SST）のように大きな後退角を持つ翼では境界層内の微小不整乱に伴い流れ線が不安定な支配的な役割を果たして、前線付近の三次元境界層を遷移に導くことが知られている。そこで現在航空宇宙技術研究所でも研究開発が進められている小型超音速実験機（ロケット実験機）の自然層流翼では、横流れおよび不整乱がどのような因子に起因するか、すでて実験で検証することを目的に、本記事ではこの問題と関連する超音速自然層流効果を実験的に検討した。本稿ではこの風洞実験結果を述べるとともに、その計測結果をもとに飛行条件における自然層流効果の検証を試みる。

風洞実験
超音速飛行体における境界層遷移を実験的に模擬する為には、飛行環境に近い低乱低圧音環境と高いレイノルズ数を実現する必要がある。上記の二つの条件を同時に満たす超音速風洞の存在は希少である。そこで本研究では、数の小さい低乱風洞と、気流乱れが比較的小さくかつ、小さいRe数から大きiRe数までの試験が可能な風洞の2種類を使って遷移を計測し、飛行条件における遷移位置を評価した。著者らは前者の風洞として富士重工業（株）所有の真空吸込式超音速風洞（以下、FHI 高速風洞と称する）を、後者の風洞として仏国国立航空研究所（ONERA）所有の循環式超音速風洞（以下、S2MA 風洞と称する）を採用した。真空吸込式風洞では測定部が圧力点よりも上流に位置されており、測定部上流に発生しうる送風機の振動が存在する他形式の遷移-超音速風洞と比較して、気流の乱れが非常に小さく、本風洞ではCf rms = 0.09%が報告されている。
かる。従って、設計圧力分布の高いである狭い急加速領域を
持つフラットな圧力分布による自然層流化が遷移を遅らせる
効果が確認できる。

さて風洞実験結果において70%半翼幅位置における安定
解析結果が定量的・一式を示した（発表にて詳述）ので、本解
析コードを飛行条件に適用した。図4にM=2、飛行高度15km
における安定解析結果を示す。現在、超音速飛行環境でのこ
のN値に関するデータベースは皆無で、わずかにNASAの
低乱超音速風洞によるF-X616XL模型を用いた試験でN=14
が報告されている[3]に過ぎない。今、この値に従えば、図か
ら60%以上の翼弦長位置までの層流化が期待される。

結論

ホットフィルムと赤外線カメラを用いて小型超音速実験機
（ロケット実験機）の自然層流翼の遷移特性を調べた。本研
究では、実験的に自然層流翼を観察する手法として、Re数の
小さい低乱風洞と、自発乱れを比較的小さくかつ、小さいRe
数から大きいRe数までの実験が可能な変圧風洞の二つの風
洞で遷移位置を計測し、高Re数かつ低乱の飛行環境における
遷移位置を評価する手法を採用した。その結果、本自然層流
翼の遷移Re数には単位Re数依存性が存在しないことがわか
り、M=2、α=2°（設計迎角）において70%半翼幅位置の遷
移Re数は0.8×10°であった。安定解析を飛行条件に適用し
た結果により、表面粗さと主流乱れの影響を考慮した飛行実
験時の条件（M=2、α=2°）において70%半翼幅位置の予測
遷移位置は約60%翼弦長と推定された。

謝辞

線形安定解析結果は当研究の吉田憲司氏と上田良稀氏に
ご提供いただいた。ここに感謝の意を表する。

参考文献

Y. and Shinoda, Y., N Proceedings, 46th Wind Tunnel Conference